ENGINEFRUNG DESUGN GRAPMICS JOURNAL

```
Copyright (c) }1978\mathrm{ The American
Society for Engineering Education.
Individual readers of this Journal,
and non-profit libraries acting
for them, are freely permitted to
make fair use of its content, such
as to photocopy an article for use
as to photocopy an artic
PUBLICATION BOARD
EDITOR
    Paul S. DeJong
    403 Marston Hall
    lowa State University
    Ames, Iowa 50011
    Ames, 10wa
ASSOCIATE EDITOR
    Frank M. Croft, Jr.
    Civil Engineering
    Speed Scientific School
    University of Louisville
    Louisville, Kentucky
    Louisville, Kentucky
ASSOCIATE EDITOR
    Edward W. Knoblock
    College of Engineering and
    Applied Science
    University of Wisconsin-Milwaukee
    3200 North Kramer Street
    Milwaukee, Wisconsin 53201
    Phone (414)963-5197 or 963-4967
CIRCULATION MANAGER
    Garland K. Hilliard, Jr.
    239 Riddick Hall
    North Carolina State University
    Raleigh, N.C. 27607
    Phone (919) 737-3263
ADVERTISING MANAGER
    Menno DiLiberto
    Norwalk State Technical College
    181 Richards Avenue
    Norwalk, Connecticut 06855
    Phone (203)838-9601
PUZZLE CORNER EDITOR
    Robert P. Kelso
    School of Engineering
    School of Engineering
    L O Box 4875 University
    P.O. Box 4875, Tech Station
EX-OFFICIO
    Frank Oppenheimer
    Panoramaweg }1
    8959 Hopfen Am See
    West Germany
EXECUTIVE COMMITTEE OF THE
ENGINEERING DESIGN GRAPHICS
DIVISION
Chairman: Clyde H. Kearns
Vice-Chairman: Leon !1. Billow
Secretary-Treasurer: Robert J. Foster
Past Chairman: Amogene F. DeVaney
Directors: Jack Brown
    Arvid R. Eide
    N
    Margaret Eller
    Paul S. DeJong
CALENDAR
ASEE ANNUAL CONFERENCES
1979 - Louisiana State University,
1980 - University of Massachusetts,
    Amherst. June 22 - 27
1981 - University of Southern California
```

EDGD MIDYEAR CONFERENCES

Back issues are available at single
copy rates prepaid and are limited in general to numbers published in general to numbers pubs.
Subscription expiration date (last
issue) is printed in upper right
issue) is printed in upper right
cornet of mailing label, W79 for Winter 1979, S80 for Spring 1980, etc.

ENGINEERING DESIGN GRAPHICS JOURNAL OBJECTIVES:
The objectives of the JOURNAL are:

1. To publish articles of interest to teachers and practioners of Engineering Graphics, Computer Graphics and subjects allied to fundamentals of engineering.
2. To stimulate the preparation of articles and papers on topics of interest to its membership.
3. To encourage teachers of Graphics to innovate on, experiment with, and test appropriate techniques and topics to further improve quality of and modernize instruction and courses. 4. To encourage research, development, and refinement of theory and applications of engineering graphics for understanding and practice.

STYLE GUIDE FOR JOURNAL AUTHORS
The Editor welcomes articles submitted for publication in the JOURNAL. The following is an author style guide for the benefit of anyone wishing to contribute material to Engineering Design Graphics Journal. In order to save time, expedite the mechanics of publication, and avoid confusion, please adhere to these guidelines.

1. All copy is to be typed, doublespaced, on one side only, on white paper, using a black ribbon.
2. All pages of the manuscript are to be consecutively numbered.
3. Two copies of each manuscript are required.
4. Refer to all graphs, diagrams, photographs, or illustrations in your text as Figure 1, Figure 2, etc. accordingly, either on the front or back of each.
Illustrations cannot be redrawn; they are reproduced directly from submitted material and will be reduced to fit the columnar page.

Accordingly, be sure all lines are sharply drawn, all notations are legible, reproduction black is used throughout, and that everything is clean and unfolded. Do not subnit illustrations larger than $198 \times 280 \mathrm{~mm}$. If necessary, make 198×280 or smaller necessary, make copies for submission.
5. Submit a recent photograph (head to chest) showing your natural pose. to chest) showing your natural pose. Make sure your nam
the reverse side.
6. Please make all changes in your 6. Please make all changes in you manuscript prior to submitting it. Check carefully spelling, structure,
and clarity to avoid ambiguity and maximize continuity of thought. Proofmaximize continuity of thought. Proofreading will be done by the editoria staff. Galley proofs cannot be submitted to authors for review.
7. Enclose all material unfolded in large size envelope. Use heavy cardboard to prevent bending.
8. All articles shall be written using Metric-SI units. Common measurements are permissible only at the discretion of the editorial staff.
9. Send all material, in one mailing to: Paul S. DeJong, Editor 403 Marston Hall
Iowa State University
Iowa State Univer

REVIEW OF ARTICLES
All articles submitted will be reviewed by several authorities in the field associated with the content of each paper before acceptance. Current newsworthy items will not be reviewed in this manner, but will be accepted at the discretion of the editors.

DEADLINES FOR AUTHORS AND ADVERTISERS

```
The following deadines for the submission of articles, announcements, or advertising for the three issues of the JOURNAL:
all--September 15
Winter--December 1
Spring--February 15
```


ENGINEERING DESIGN GRAPHICS JOURNAL

VOLUME 42 NUMBER 4
INDEX

1936-1978

$$
\begin{aligned}
& \text { including } \\
& \text { Journal of Engineering Drawing } \\
& \text { Vol. 1, No. 1, } 1936 \text { - } \\
& \text { Journal of Engineering Graphics } \\
& \text { Vol. 22, No. 2, } 1958 \text { - } \\
& \text { Engineering Design Graphics Journal } \\
& \text { Vol. 34, No. 1, } 1970 \text { - } \\
& \text { 1955-1965 indexing } \\
& \text { by } \\
& \text { Ear1 D. Black }
\end{aligned}
$$

DISTINGUISHED SERVICE

AWARD

Previous Recipients

FREDERIC G. HIGBEE	950
FREDFRICK E. GIESECKE	1951
GEORGE J. HOOD	1952
CARL L. SVENSEN	1953
RANDOLPH P. HOELSCHER	1954
JUSTUS RISING.	1955
RALPH S. PAFFENBARGER	1956
FRANK A. HEACOCK	1957
HENRY C. SPENCER	1958
CHARLES E. ROWE	1959
CLIFFORD H. SPRINGER	1960
WILLIAM E. STREET	1961
JASPER GERARDI	1962
THEODORE T. AAKHUS	1963
WARREIN J. LUZADDER	1964
RALPH T. NORTHRUP	1965
JAMES S. RISING	1966
IVAN L. HILL	1967
B. LEIGHTON WELLMAN	1968
EDWARD M. GRISWOLD	1969
J. HOWARD PORSCH	1970
MATTHEW McNEARY	1971
PAUL M. REINHARD.	1972
EDWARD W. JACUNSKI	1973
IRWIN WLADAVER.	1974
ROBERT H. HAMMOND	1975
EUGENE G. PARE'	1976
PERCY H. HILL.	1977
C. GORDON SANDERS	1978
For Citations and Responses seeJOURNAL Issue No. 3 of theaporopriate year.	

CHAIRMEN AND CHAIRWOMEN OF THE DIVISION

Past and Present

THOMAS E. FRENCH.	1928-1930
HARRY M. McCULLY	1930-1935
JOHN M. RUSS	1935-1938
CARL L. SVENSEN	1938-1939
CLAIR V. MANN.	1939-1940
RANDOLPH P. HOELS	1940-1941
WALTER E. FARNHAM	1941-1944
JUSTUS RISING	1944-1946
JOHN T. RULE	1946-1947
FPANK A. HEACOCK	1947-1948
HENRY C. SPENCER	1948-1949
ORRIN V. POTTER	1949-1950
RALPH S. PAFFENBARGER	1950-1951
CLIFFORD H. SPRINGER	1951-1952
JASPER GERARDI	1952-1953
RALPH T. NORTHRUP	1953-1954
THEODORE T. AAKHUS	1954-1955
IVILLIAM E. STREET.	1955-1956
IVAN L. HILL	1956-1957
WARREN J. LUZADDER	1957-1958
JAMES S. RISING.	1958-1959
ALBERT JORGENSEN	1959-1960
IRWIN WLADAVER	1960-1961
ED!JARD M. GRISWOLD	1961-1962
MATTHEW McNEARY	1962-1963
B. LEIGHTON WELLMAN	1963-1964
ROBERT H. HAMMOND	1964-1965
J. HOWARD PORSCH	1965-1966
EDWARD W. JACUNSKI	1966-1967
EUGENE G. PARE'	1967-1968
EARL D. BLACK.	1968-1969
STEVE M. SLABY	1969-1970
JAMES H. EARLE	1970-1971
PERCY H. HILL	1971-1972
WILLIAM B. ROGERS	1972-1973
KENNETH E. BOTKIN	1973-1974
CLAUDE Z. WESTFALL	1974-1975
ROBERT D. LaRUE	1975-1976
CLARENCE E. HALL	1976-1977
AMOOEENE F. DeVANEY	1977-1978
CLYDE H. KEARNS	1978-1979

EDITORS OF THE JOURNAL

CLAIR V. MANN	1936-1938
FRANK A. HEACOCK	1938-1940
FRED W. SLANTZ.	1940-1942
R.R. WORSENCROFT	1942-1944
WILLIAM E. STREET	.1944-1946
THEODORE T. AAKHUS	.1946-1952
WARREN J. LUZADDER	.1952-1955
IRWIN WLADAVER.	.1955-1958
WAYNE L. SHICK	.1958-1961
MARY F. BLADE	.1961-1964
EARL D. BLACK.	1964-1967
BORAH L. KREIMER	.1967-1972
AL ROMEO.	1972-1973
JAMES H. EARLE	. 1973-1976
PAUL S. DeJONG	1976-1979

GUIDE TO USE

This Index is divided into two parts: a Subject Index beginning on page 5, and an Author Index beginning on page 33. Each entry is located by a four-number notation giving the volume, number, year of issue, and page number of the article. For example, under Advanced Drawing, the article

Research in Engineering Graphics
J.H. Earle................. 292657 will be found in the issue Vol. 29, n.2, (1965), p. 7.

Just below this entry, a dotted line is seen across the column. Entries preceding this line appeared in one of the several partial indexes previously assembled (see INDEXES). Entries following the dotted line normally begin with Vol. 30, 1966 unless an omission was detected. Such omissions will appear below the dotted line.

The late W.E. Street* performed an extremely valuable service by documenting the Journal's early history and irregularities therein. Since few libraries have complete sets of the JOURNAL, this information will be helpful if copies of articles are requested by mail.

Volume	Date	Number	Series
Vo1. 1	Dec. 1936	No. 1	
Vol. 1	May 1937	No. 1	
Vol. 1	Oct. 1937	No. 3	

The May, 1937 issue should, of course, be No. 2, to avoid conflict. This issue is identified as May 1937 in this Index instead of using its incorrect Volume and Number. The issues continue:

Vol.2	Jan. 1938	No. 1	
Vo1.2	May 1938	No. 2	
Vo1. 3	Oct. 1938	No. 1	Whole No. 6
Vol. 3	Jan. 1939	No. 2	Whole No. 7

Vo1. 3	May 1939	No. 3	Whole No. 8
Vol. 3	Nov. 1939	No. 4	Series No. 9

Volume 3 contained four issues and made up for the two-issue Volume 2. Volume 3, No. 1 should have been Volume 2, No. 3, in view of its date of issue.

Then, until the Special issue, Proceedings of the 1967 Summer School on Creative Design (Vol. 31, No. 4), each volume consists of a February or Winter issue (No. 1), a May or Spring issue (No. 2) and a November or Fall issue (No. 3). The series numbers are correct from:

Vol. 5 Feb. 1941 No. 1 Series No. 13 to:

Vol. 31 Special 1967 No. 4 Series No. 94 the next issue,

Vol. 32 Winter 1968 No. 1 Series No. 94
was erroneously given the same series number, but the next issue,

Vol. 32 Spring 1968 No. 2 Series No. 96
corrected that error, except that there simply is no "95th" issue in the series.

The use of the "series" designation was discontinued by the present editor since it seemed redundant:

Vol. 41	Spring 1977	No. 2	Series 123	
Vol. 41	Fall	1977	No. 3	
Vol. 42	Vinter 1978	No. 1		

Since this Index includes all articles pub1ished through Vol. 42, No. 3, it is given the designation Vol. 42, No. 4. We recognize that this is irregular in that parts of Vol. 43 are in process, but the correct location for an index is generally considered to be the next immediate issue. Thus, by assigning it as the last issue of Volume 42, it will be bound at its appropriate position by libraries.

[^0]
FOREWORD

This special Index issue of the JOURNAL represents a great deal of work on the part of many people - the authors and editors - but especially on the part of Irwin Wladaver, who single-handedly catalogued it. The Division owes Vlad a LARGE debt of gratitude for his efforts. Some time ago Vlad agreed to do the job at then-editor Jim Earle's request, but a vision problem made him give it up temporarily. He took it up again recently and this issue is the result of what can only be called his heroic efforts.

As editor, I have often felt the urgent need for a Journal Index, but it was not until I was proof-reading and assembling the camera copy that I realized just how badly-needed this Index really is. If the Division is to honestly progress, the mass of past efforts must be built upon, not repeated, and careful examination of the entries will show that many people have made significant contributions in almost any area you can mention.

No doubt there are a few categorizing and cross-referencing problems. We have interspersed blank pages frequently for your use in highlighting and updating your areas of interest in the future. In general, the Index is quite complete and should be a veritable gold mine to the interested graphician. I could dwell on that point at great length, but couldn't say it any better than Vlad did in his article "Index to the Past and to the Future" (V17, n2, 1953, p14). You'd do well to read that one along with his commentary 'Design for Barkin' Up the Wrong Tree". You' 11 find them both quite thought-provoking....

SUBJECT INDEX

Abstract

In some instances, changes in titles have been made where original titles are not sufficiently indicative of the subject content. Articles dealing with several topics appear under several headings.

ADMINISTRATION
Vol. No. Yr. Pg.

ADVANCED DRAWING AND RESEARCH

dvanced Course in fraphics D.P. Adams.	6	2	42	2
Advanced Degrees in Graphics.				
A.S. Levens	2	2	38	16
Advanced Drawing in Industry.				
R.R. Hagen	16	2	52	23
Application of Advanced				
Graphics.				
F.A. Heacock	16	1	52	11
Application of Advanced				
Graphics: Crystallography				
H.T. Evans, Jr.	12	2	48	8
Belt Tightener for Motor-				
Compressor.				
R.R. Worsencroft	5	1	42	10

Cancer Treatment Calculation
Aided by Descriptive
Geometry.
H.W. Vreeland. $18 \quad 1 \quad 5415$

Centering Attachment.
B.L. We11man. $5 \quad 3 \quad 417$

Clutch Fork Jig Assembly.
H.W. Savage..................... 4 3 13

Combined Bearing Cap, Speed-
ometer Gear and Worm Housing.
H.W. Savage............................
H.
Design and Research.
F. McFarland......
A.S. Levens. $15 \quad 2 \quad 51 \quad 13$

Graphic Skills in Solving
Differential Equations.
G.W. Walsh, Jr.................. 171714314

Possibilities in Advanced Graphics.
F.A. Heacock................ 1212485

Research in Engineering
Graphics.
J.H. Earle..................... $29 \quad 2 \quad 65 \quad 7$

ARMY SPECIALIZED TRAINING.
W.E. Street 8124412
A.S.A. Z14 REVISION REPORT.
R.P. Hoelscher
$13 \quad 3 \quad 49 \quad 23$
AWARDS - SPECTAL ATIARDS
See also Distinguished Service Award
Awards, Special--Announcements.

Kreidler Award for Graphics	30	3	66	46
Oppenheimer Award for Excel-				
lence of Papers, Present-				
ations, etc	30	3	66	46
The Kreidler Award	32	3	68	11
The Oppenheimer Award	32	3	68	11
Oppenheimer Award to Oppenheimer!				
C.Z. Testfall	39	1	75	47
Special Recognition Award to				
Frank Onoenheimer	39	2	75	39
Award Established by Frank				
Oppenheimer for Excellence				
in a Presentation of Descriptive Geometry.	29	1	65	21

AXONOMETRY. See Pictorial Representation.

CABINET. See Pictorial Representation.

CARTOGRAPHY AND MAPPING.

Cartography - A Graduate			
J.G. McGuire.	17	1	53
Cartography, Isometric Block			
Diagrams in.			
R.O. Huzarski	14	3	50

Course in Graphics.
J.G. McGuire............... 17 1 7

Dgraphy,
R.O. Huzarsk

14

An Exercise in Coordinate				
Plotting.				
Edward Holland, Jr...................	41	1	77	54
Graphical Solution by Manping.	36	2	72	4

CHEMICAL ENGINEERING AND DRANING
R.C. Kintner................. $4 \quad 24017$

COLLEGE CREDIT FOR HIGH SCHOOL DRANING. See High School-College Relations.

COLOR IN TEACHING.
See Teaching Aids.

COMMITTEES.
See Division, Committees.

COMMON ERROR IN TEXTBOOKS.

| G.J. Hood. | 3 | 2 | 39 | 6 |
| :--- | :--- | :--- | :--- | :--- | ---: |
| G.J. Hood. | 1 | 41 | 18 | |

COMPUTERS IN DESIGN AND GRAPHICS.

The Place of the Digital Com-
puter in Graphics Instruction
and the Purpose of Flow
Designs.
C.J. Baer..................... . $27 \quad 3 \quad 6313$

An Application of Computer
Aided Design to Electro-
cardiography
J.C. Otis...................... $35 \quad 1 \quad 71 \quad 35$

Computer Aided Design of
Master Templates.
Abram Rotenberg and S.M.
Slaby......................... 40161616
Computer-Aided Graph Paper Construction.
Chih Wu and R.A. Hirsch.... 42307838
Computer-Aided Pipe Sketching.
J.A. Roberts.................
$\begin{array}{llll}37 & 2 & 73 & 45\end{array}$
Computer-Drawn Curves Using Spline Techniques.
Richard Hang …......... $39 \quad 1 \quad 35$
Computer Drawings by Engineer-
ing Graphics Students. Norman Buchanan.............. $30 \quad 2 \quad 6627$
Computer Graphics.
G.L. Ross................... 3210638

Computer Fraphics at Mississ-
ippi State University.
Wilbur Pearson............... $38 \quad 3 \quad 74 \quad 7$
Computer Graphics in the Pack-
ing Technology of Electronic Devices.
M.H. Asghar................... $42 \quad 1 \quad 7812$

Computer Graphics Capability
at Vanderbilt University.
R.J. Beil and P.W. Sherrod. 413077 24

Computer Graphics for EDf.
J.T. Coppinger................. $38 \quad 2747$

Computer Sraphics - Its Role				
in Engineering Graphics and				
Design Courses. C.E. Hall.....	36	2	72	19
A Computer Graphics Package.				
C. H . Kearns	37	1	73	
Computer Graphics Using A				
Plasma Pane1.				
R.I. Hang	40	3	76	24
Computer Mediated Instruction				
Programs in Engineering				
Graohics.			73	
Computer Produced Nomographs.				
E.V. Mochel	33	1	69	37
Computer Programming: A				
Design Aid.				
A. Feller.	33	3	69	52
Computer Reassured Daredevil				
Before He Spiral Car.				
MACHINE DESIGN.	36	2	72	
Computer Technique for Modern				
Descriptive Geometry.				
Luisa Bonfiglioli.	34	2	70	44
Computers and Determination				
of Intersection Lines.				
J. Charit.	41	2	77	46
Contouring				
C.M. Hulley.	4.1	2	77	60
An Elective Course in Computer				
Graphics.				
E.V. Mochel.	34	3	70	54
Engineering-Computer Graphics.				
C.W. Pidgeon	39	1	75	29
Engineering Decision-Making				
with the Computer.				
B.L. Kreimer and Yaakov				
Arwas	42	3	78	5
An Exercise in Coordinate				
Plotting.				
Edward Holland, Jr	41	1	77	54
Exploitation of Computer Graphics				
Capabilities.				
Freshman Graphics Involving				
the Computer.				
F.A. Mosillo.	37	2	73	30
Fortran Programming Made Easy.				
G.D. Gordon.	33	2	69	38
Functional Scales on a Plotter				
Using Graphical Concents.				
F.K. Brown.	34	1	70	24
Geometry and Interactive				
Computer Graphics.				
S.M. Slaby..	40	2	76	34
The Graphical and Digitalized				
Output of a Differential				
Equation.				
C.J. Baer and Steven Butner	31	1	67	21
Graphic Calculus Verified by				
an Analog Computer.				
F.E. Gorczyca.	31	1	67	19
The Implementation of TRIDM				
at Chicago Circle.				
F.A. Mosillo.....	38	1	74	29
Layered Geometrical Surface				
Designs: "Visual Music".				
Reinhard Lehnert.	42	3	78	42
Logarithmic Scale Computer				
Program.				
Clair Hulley	33	3	69	59
Mobil Computer Graphics				
Laboratory				
G.R. McClain	37	1	73	43
and concluded in.	37	2	73	44

COMPUTERS IN DESIGN AND GRAPHICS (continued)

Numerical Control Drafting.				17
Numerical Control Assignment				
in Automated Drafting.				
F.E. Gorczyca and J.C. Barylski	38	3	74	4.5
Predetermined Ellipse Guide				
Angles for Axonometric .				
Projection.				
L.E. Stark and D.L.Schafer.	38	3	74	11
Representation of Curved Sur-				
faces by Computer Graphics. 41277				
Scales and Alignment Charts				
Using a Digital Plotter.				
C.M. Hulley - Part I	38	2	74	27
Part	38	3	74	17
Slide and Disc Calculators.				
C.H. Kearns.	22	1	58	29
Some Comments on the Goals of				
Engineering Education.				
Committee Report.				
J.S. Dobrovolny, Chr.	30	2	66	20
Standards in Computer Graphics.				
Studies in Computer Graphics				
at the University of Colo. 33306056				
Use of Computer Graphics in				
Product Engineering.				
N.L. Brown. . .	42	1	78	22
Using Graphics to Teach				
Computer Programming.				
Variations of Projection Sys-				
tems Using a Computer.				
E.V. Mochel.	36	1	72	44
What A Scientific Computer				
Center Can Do for the				
Engineer				
J.B. Vail and J.R. Sandlin.	33	1	69	42

CONFERENCES, MEETINGS, SUMMER SCHOOLS:
Listed on the inside back cover of this Index.

CREATIVITY. See also DESIGN.
Creative Engineering Design Display at Vancouver,1978. Paul S. DeJong.............. 42324
Creative Ingenuity - Or Frustration. R.D. LaRue................... 4137736

Creativity - Its Care and Cultivation Among Engineering Students. J.S. Blackman................ $34 \quad 2 \quad 7022$

Creativity - What It Is and What We Have to Do With It. F.L. LaRue, Jr.............. 33206

Ideas: Imaginative, Practical, Hopeful. C.E. Hail..................... 41 177

Programmed Invention. S.W. Miller.................. . . 3713 24

CROSS RATIO IN ELEMENTARY DRAYING.
S.A. Coons..................... $14 \quad 1 \quad 50 \quad 9$

CULTURAL VALUES.
See Also Engineering Education.
Humanistic-Cultural Contribut-
ions of Engineering Drawing and Descrintive Geometry.
F. G. Higbee................ 1212488

What Price Culture in Engineer-
ing Drawing, Descriptive
Geometry and Elementary
Machine Design.
Part I, J.L. Hill............ 3 1. 386
Part II, H.W. Leet.......... 310
Discussion.
C.H. Black................... 314

Discussion.
A.S. Langsdorf................ 316
$\begin{array}{llllll}\text { Discussion. } \\ \text { H. C.Spencer } & 3 & 1 & 38 & 16\end{array}$
. Spencer
E.L. Williams. $3 \quad 1 \quad 3811$

DESCRIPTIVE GEOMETRY - THREE-DJMENSIONAI
The Challenge of Multidimensional
Parallel-Axis Projection.
Forrest M. Noodworth....... 2636626
The Christian Approach to
Vexing Vectors.
Marshall J. Christian...... $28 \quad 3 \quad 6411$
Aims of Descriptive Geometry. 4240
H.B. Howe.................... 4 2. 402

Airplane Lines and Lofting.
B.D. Washburn...............
5 241212
Analytic and Graphic Solutions.
H.C.T. Eggers................... $15 \quad 1 \quad 5126$
Application to Geology.
A.N. Appleby................... 10104621

The Direct Method in Transfer
of Training.
M. McNeary. $17 \quad 3 \quad 5334$

To Circumscribe a Pentagon
About A Circle.
V.H. Paquet................... $20 \quad 2 \quad 5636$

Descriptive Geometry and Chemistry II.
Steven Viznerand and Alan
Renko......................... 27 27 6316
Descriptive Geometry and Design Applications.
John P. Oliver............... . $29 \quad 1 \quad 6517$
Descriptive Geometry and Heat
Transfer Studies (An Inter-
view with Prof. Wilson Trip)
M.F. BLADE.................... 272711

Descriptive Geometry Courses
Which Comply With the Eval-
uation Report.
Raymond A. Kliphardt....... 21115722
Descriptive Geometry in
Industry.
F.W. Varner................... 112475

Descriptive Geometry in
Shipbuilding.
R.P. Iodice.................... 1627527

Descriptive Geometry, Mech-
anics, and Mathematics.
H.H. Taylor................. $13 \quad 3 \quad 499$

Descriptive Geometry Methods.
G.J. Hood..................... 1 3 37

Descrintive Geometry Rides Again.
J. Gerardi.................... $4 \quad 30$ @

Isometric Approach to Descriptive Geometry.
B.M. A1drich.................. 9 1917
(continued)
Make It Practical.
J.D. McFarland.............. 9 45 5

Descriptive Geometry: Some Reflections of the Past and Speculations for the Future.
William B. Rogers........... 2836416
"Geometry" and Relativity Today
John A. Wheeler.............. $28 \quad 3 \quad 6423$
Indexed Projection, Baruch Bergthal, University of Cordova, Argentina. (Translated by I.Wladaver). $\begin{array}{llll}27 & 3 & 63 & 5\end{array}$
I Need Help.
Robert H. Hammond........... 24206018
What Do You Mean 'Direct" or An O1d Fogey Strikes Back. H.C.T. Eggers................. 182544

Why the "Direct" Method. or An Older Fogey Strikes Back. G.J. Hood...................... $18 \quad 3 \quad 5456$

Treatment-Calculation of Cancer. H.W. Vreeland................ $18 \quad 1 \quad 54 \quad 15$

Problem in Descriptive Geometry. $26 \quad 2 \quad 62 \quad 9$
Problem Books and Decreased Time.
H. Eggers...................... 1414

Reflections on the Foundamentals of Descriptive Geometry.
C. Ernesto S. Lindgren. $29 \quad 1 \quad 65 \quad 9$

Relation Between Projective and Descriptive Geometry. V.P. Borecky................. 261062

Science Is Where You Find It. R.A. Kliphardt............. 271142

Some Applications of Descriptive feometry to Solar Astronomy. C.E. Rowe. $26 \quad 2628$

Shipyard Drafting. $\begin{array}{llllll}\text { Part I, A.M. Merril1........ } & 7 & 1 & 43 & 17 \\ \text { Part II, A.M. Merrili...... } & 7 & 2 & 43 & 12\end{array}$
Stereographic Drawings in Descriptive Geometry. R.T. Henning.................. 143714

Traces vs. Direct Method. J.P. Oliver................... 12194819

What is Fundamental In Descriptive Geometry? B.L. Wellman................. $14 \quad 1 \quad 506$

Teaching Descriptive Geometry with Colored Transparencies. Clayton W. Chance........... 26206213
Technique of Projective Geometry and the Application to Engineering Problems. V.P. Borecky................. $25 \quad 3 \quad 628$

Trisection of An Arbitrary Acute Angle. Walter E. Lambert. $29 \quad 1 \quad 6530$
Trimetric Projection - Another Reason and Another Way. James R. Holmes............. . . $25 \quad 1 \quad 6120$
When Is A Cube Not A Cube? Michael P. Fuerard.......... $28 \quad 3 \quad 6431$
Where Angels Fear to Tread. Irwin Wladaver............... 29206511
There (Some) Angels Fail to Tread.
C.E.S. Lindgren. $29 \quad 3 \quad 6526$

Borecky, Lindgren, and Pozniak $\begin{array}{lllll}31 & 2 & 67 & 4\end{array}$


```
DESCRIPTIVE GEOMETRY -- THREE-DIMENSIONAL
    (continued)
```

J.P. Oliver	12	1	48	19
The Use of SI Units in Descrintive feometry.				
Frank M. Croft.	42	2	78	16

DESCRIPTIVE GEOMETRY - FOUR- and N-DIMENSIONAL Also 4-D EUCLIDEAN GEOMETRY.
Axonometric Picture and
Stereoscopic Model for
Four-Dimensional Euclidean
Geometry.

The Hyperstereogram - A Device for the Synthetic Percention of Four-Dimensional Objects. D.W. Brisson............... $41 \quad 3 \quad 7736$

Symmetry in Four-Dimensional Space.
C.E.S. Lindgren. $29 \quad 2 \quad 6518$

DESIGN

Artistic Design for Engineers.
O.M. Stone.................. 2 2 38 6

Beauty and the Center of Sravity F. Paulsen................. $18 \quad 2 \quad 5415$

A Backstage of Genius. Kenneth E. Lofgren........ 26 2 628
Between the Itch and the Answer William H. Lichty........... $29 \quad 2 \quad 659$
Creative Design in Engineering Graphics. Ernest R. Weidhaas......... $27 \quad 2 \quad 6312$
A Conceptual Design Experiment in Engineering Graphics. K.E. Hartz and R.J. Foster. 29316511

Creative Expression in Engineering. R.L. Ritter, A.E. Lemke and R.J. Panlener.......... $24 \quad 2 \quad 6019$
Curriculum in Technical Design at Arizona State Univ...... $28 \quad 2 \quad \begin{array}{lllll}64 & 28\end{array}$
Design and the College Freshman. William S. Chalk........... 28
Design and Research F. McFarland............... 16 2. 5218

The Design Team-Engineer and Draftsman. R.C. Smith................. 20211

Creative Design Translated Into Reality. C.J. Baer.	39	3	75	
Creativity - Its Care and				
Cultivation Among Engineer-				
J.S. Blackman	34	2	70	22
Design - A Definition.				
F.H. Smith.	32	1	68	20
Design for the Donor.				
Marc Harrison.	38	3	74	19
Design Geometry of Inflatable				
Boats. Mary Blade and Ellis Blade	19	3	55	14
Design Graphics and Appropriate				
Technology: Summarized by				
Knoblock and presentation				
ception Between an Engineer and Himself.				
P.Z. Bulkeley	32	2	68	18
Design Instruction for				
Freshman Engineers.				
Paul S. DeJong.	36	1	72	
Design Problems.				
J.H. Earle.	38	2	74	46
Design Problems in Product				
Development.				
J.H. Earle	31	3	67	33
Design Problems in Systems				
Analysis.				
The Design Process - Superchair				
Design Projects: Large vs.				
Small; Individual vs. Team.				
Design Simplification.				
Edward Holland, Jr	40	1	76	42
The Development of Courses in the Introduction of Engineer-				
ing Design.				
R.G. Golden	33	2	69	26
Education for Engineering				
Design Involvement.				
E.N. Stevensen, Jr	37	1	73	39
An Efficient Plan Storage File.				
Edward Holland, Jr..........	41	3	77	35
Encoding the Prototype: The				
Engineering Model.				
Alan Krigman...	31	2	67	15
Engineering Decision-Making				
with the Computer. ${ }_{\text {Borah }}$ L. Kreimer and Yaakov				
Arwas	42	3	78	55
Engineering Design and Engi-				
E.V. Jacunski.	32	1	68	29
Engineering Design in Physical				
Medicine				
W.J. Crochetiere..	34	3	70	49
Evaluation of a Program in				
Engineering Design fraphics.				
C.M. Story........... .	35	1	71	30
Experience with Design Problems				
L.A. Schienbein.	39	2	75	45
Experiment with Open-Laboratory				
Instruction in Engineering				
Graphics.				
E.D. Black	32	3	68	35
Feet Flin Fin; Free Fingers				
for Fishing. R.F. Stengel.				
	33	2	74	47

Reality.
C.J. Baer....... 39

Cultivation Among Engineering Students.
J.S. Blackman
gn - A Definition
sign for the Donor.
Marc Harrison............... $38 \quad 3 \quad 7419$ Boats. Mary Blade and Ellis Blade. $19 \quad 3 \quad 5514$
Design Graphics and Aopronriate Technology: Summarized by Knoblock and presentation ign Graphics - Visual Perception Between an Engineer and Himself.
P. Bulkel sign Instruction for Freshman Engineers. Paul S. DeJong J.H. Earle................... 3827446 Development. J.H. Earle.................... 3133 ign Problems in Systems Analysis.
Design Process - Superchair
G.T. Finley................... 38 149 Small; Individual vs. Team. M.L. Need................... 42 2 78 6

Design Simplification.
Edward Holland, Jr......... $4_{0} \quad 1 \quad 76$
The Development of Courses in the Introduction of Engineering Design.
ducation for Engineering Design Involvement. E.N. Stevensen, Jr......... Efficient Plan Storage File coding the Prototype: The Engineering Model. Alan Krigman.................. 31226715
Engineering Decision-Making with the Computer. Borah L. Kreimer and Yaakov Arwas......................... neering Graphics. E.W. Jacunski.................. Medicine
W.J. Crochetiere............

Engineering Design Graphics. C.M. Story.................. 3517130

Experience with Design Problems.
L.A. Schienbein................ 39207545
Experiment with Open-Laboratory Instruction in Engineering Graphics.
E.D. Black.................. 323635
for Fishing
R.F. Stengel

33

Freshman Engineering Design				
Projects J . ${ }^{\text {a }}$.				
A.J. Brainard.	4.1	1	77	38
Getting to the Problem of the Bottom. reprinted from				
Graphical Determination of				
Flow Area Through Padial				
Flow Compressor or Turbine				
D.E. Keyt	35	2	71	26
Graphics: Indispensible in				
R.A. Keech and R. R . Reynolds	32	2	68	36
Graphics in the United				
Kingdom.				
J.F. Watson	38	1	74	17
Human Engineering.				
W.E. Woodson.	37	3	73	22
Imagination - Key to Invention and Enterprise.				
Athelstan Snilhaus.	39	2	75	11
Spilhaus' Responses to				
Questions.	30	2	75	17
Introduction to Engineering				
and Design.				
F.A. Mosillo.	34	3	70	41
Inventive Design in Instruction				
Techniques.				
P.H. Hill.	30	2	66	11
Know-How Versus Guess-How.				
E.D. Black.	31	2	67	25
Kreidler, Alfred: A Supporter of the Division; Introductory Creative Design				
Display.	32	3	68	6
Laboratory in Consumer Product				
Evaluation.				
A.H. Clemow.	37	3	73	6
Layered Geometrical Surface				
Designs: 'Visual Music'.				
Reinhard Lehnert.....	42	3	78	42
A Lesson for Detroit - Student				
Taught				
G.T. Finley.	39	1	75	23
The Library as a Design Project.				
F.A. Mosillo	40	2	76	24
A Look Beyond.				
K.E. Kroner.	33	1	69	3
A New Approach to Design:				
Summarized by Knoblock;				
Presented by S.F. Love.	41	2	77	19
The Rationale of One Period				
Design Problems.				
R.J. Foster.	36	2	72	2
Realism for Freshman Engineer-				
ing.				
Alan A. Karplus.	31	3	67	25
The Role of Graphics in				
Industry. 36172				
Systematic Design of an				
Effective Engineering Graphics Program.				
C.W. Bechtold.	35	2	71	19
Student Designers Look at				
Recycling.				
R.B. Aronson	37	1	73	20
Teaching the Design Process				
in the Freshman Year				
R.M. Coleman.	33	1	69	21
The Team Aoproach in Teaching				
Graphics and Design.				
E.D. Black.	33	1	69	28

setting to the Probiem of
the Bottom. reprinted from
Design News.................... 39 307520
信
Flow Compressor or Turbine
Theel.
D.E. Keyt.................... 35267126
Indisnensible in
Machine Design.
aphics in the United
Kingdom.
J.F. Natson....................
Human Engineering.
agination - Key to Invention
and Enterprise.
Athelstan Snilhaus.
ilhaus Responses to
Questions..........................39
75
17
Introduction to Engineering
and Design.
F.A. Mosillo................... 3437041
Inventive Design in Instruction
Techniques.
P.H. Hill.................... 30
Know-How Versus Guess-How.
E.D. Black...................... 31-2 27
Alfred: A Supporter
of the Division; Intro-
ductory Creative Design
$3-68-6$
Evaluation.
A.H. Clemow.................. 37373
Layered Geometrical Surface
Designs: "Visual Music".
Reinhard Lehnert............ 4237842
Lesson for Detroit - Student
Taught.
G.T. Finley..................... $39 \quad 1 \quad 75 \quad 23$
Fibrary as a Design broject.
Look Beyond.
K.E. Kroner................... 331169
A New Approach to Design:
Summarized by Knoblock;
Presented by S.F. Love..... 41227719
The Rationale of One Period
Design Problems.
R.J. Foster.................. 362
ing.
Alan A. Karplus.............. $31 \quad 3 \quad 6725$
Industry.
J.R. Harrell................. $36-1-72$ - 37
Effective Engineering Graphics
Program.
C.W. Bechtold................ $35 \quad 2 \quad 7119$
dent Designers Look at
R.B. Aronson. 371020
Ring the Design Proces
in M.
e Team Aoproach in Teaching
Graphics and Design.
E.D. Black.................. 33116928

DESIGN (continued)

Three-Prong U-Bar and Carrying Case. W.F. Carpenter and H.W. Blakeslee.	30	2	66	44
Two Devices to Aid in Spinal				
Analysis.				
L. D. Bal1	37	2	73	38
A Visiting Engineer Program. J.H. Earle.	32	2	68	24
Visiting Engineer ProgramReviewed.				
J.H. Earle...	40	1	76	32
Walking on Water.		2		
What Industry Needs in Design	33	2	69	36
Engineers.				
A.E. Turner	40	2	76	10
What is Meant by Engineering Design?				
R.J. Leuba.	37	2	73	24
What is the Purpose of Design?				
Frank Mosillo	42	3	78	37
On the Writing of Design Projec P.H. Hill	ts.	3	68	28

DEVELOPMENTS .

Developable Transition Piece C.A. Hachemeister and				
A. Cefola..........	6	2	42	10
Development of She11 P1ating by the Mean-Normal Method. N.J. Dixon.	16	3	52	17
The Pi Scale.				
G.W. Mitche11.	11	2	47	20
Rectification of a Circle.				
P. Bessemer.	16	3	52	30
Rectification of a Circle.				
J.S. Rackway.	12	3	48	26

DIMENSIONING .
See Tolerancing, Metrication.
Advanced Principles in Dimensioning of Engineering Drawings. P.G. Belitsos................ $21 \quad 3 \quad 5714$

British and American Methods of Tolerances. S.B. Elrod................... 1811547

Decimal Dimensioning Adopted by Ford. A.F. Denham. 41404

Decimalized Measure Versus the Metric System. Earl D. Black................. $26 \quad 3 \quad 6230$
Dimensioning. W.E. Street.................. 34397

Dimensioning and Checking Drawings. R.M. Coleman. $21 \quad 1 \quad 5749$

Dimensioning Drawings. R.T. Northrup............... 41402

Dimensioning Practice. A.J. Altz......................

Don't Specify the Impossible. L.R. Smith..................

Guide Lines for Dimensioning. F.C. Bragg.....................

Job Analysis for Dimensioning. J.G.H. Thompson.

Measurement. J.N. Arnold................... 1

Methods of Presenting Dimensioning. R.E. Machovina.	12	1	48	5
More Dimensioning Practice.				
S.B. Elrod.	13	1	49	6
New SAE Dimensioning Standards.				
C.M. Buh1, Jasper Gerardi, and G.L. McCain.	20	1	56	19
Size Description.				
J.M. Russ.	May		37	9
Student Checking and				
Dimensioning.				
A. Jackson.	6	1	42	8
Surface Finish.				
R.P. Trowbridge.	15	3	51	23
Surface Roughness Symbols.				
J.A. Broadston.	9	3	45	29
Teaching Tolerances.				
J. Gerardi.	11	2	47	12
Teaching Tolerances				
J. Gerardi and E.J. Massard	12	2	48	15
Teaching Tolerances.				
J. Gerardi and O.B. Noren..	11	3	47	20

Developments for Surface Finish.
R.P. Trowbridge............. 193527

Tolerancing System, Requirements of a
E.D. Black.................... 193535

DISTINGUISHED SERVICE ATAARD.
A Complete List of Recipients Appears on Page 2 of This Index

DIVISION OF ENGINEERING DESIGN GRAPHICS.
See also History of the Division.
See also Division of Engineering Drawing, also Division of Engineering Graphics.

BYLAWS for the Division of
Engineering Division....... $32 \quad 1 \quad 68 \quad 22$
Full details.................. 32 1868
BYLAWS for the Division....... $38 \quad 1 \quad 7434$
BYLAWS - Proposed changes..... $39 \begin{array}{llll}79 & 2 & 75 & 41\end{array}$
BYLAWS for the Division....... $40 \quad 3 \quad 7640$
Organization Chart of Officers
and Committees, $1974-75$....
38
3
The Chairman Review the Year.
S.M. Slaby....................... 3420
70
1969-1970, A Memorable Year. (Editorial)
B.L. Kreimer.................. $34 \quad 2 \quad 70 \quad 3$
$\begin{gathered}\text { Conventions! (an editorial) } \\ \text { B.L. Kreimer........................ }\end{gathered} 3^{2} \quad 3 \quad 70$
Conventions Revisited!!
(Guest Editorial -A Reply)
P.H. Hill.................... 35112

1971-1972 and the Next Decade, $\begin{array}{lllll}\text { Annual Report to the Division. } \\ \text { P. H. Hill. } & & & & \end{array}$
Kreidler, Alfred: A Supporter of the Division: Introductory Creative Design Display............................. $32 \quad 3 \quad 68 \quad 6$
Annual Design Display. John Bary1ski.................. $32 \quad 3 \quad 6818$
Engineering Design Display at Annapolis. (Included for historical value, with credits and names)......... $35 \quad 3 \quad 7122$

ENGINEERING DESIGN GRAPHICS JOURNAL
(originally Journal of Engineering Drawing, then Journal of Engineering Graphics, renamed starting with V34, n1, 1970.)

Editors of the Journal
See Editors
Indexes.
See Index
The JOURNAL Goes to Metric
Size........................... 42248
JOURNAL Self-Study Report (Summary). S.M. Slaby for the Committee................ Plot.
C.M. Hulley.................... $41 \quad 1 \quad 77$ CP

ENGINEERING DRAWING.
See Engineering Graphics. Also Advanced Drawing;
Cultural Values; Engineering Education; Problems.

Can Speed Be Taught? E.B. Meier.	11	2	47	28
Contribution of Drawing to				
Design.				
D.L. Arm.	4	2	40	
Course Development to Meet				
Present Needs.				
R.S. Paffenbarger.	17	1	53	26
Degree Curricula in Technical				
Drawing and Engineering				
Graphics.				
H.C. Spencer	18	1	54	12
Drawing in Machine Design.				
V.L. Doughtie.	10	1	46	17
Educational Contributions of				
Drawing.				
F.C. Higbee.	4	3	40	11
Engineering Department at Work.				
	6	1	42	13
Engineering Drawing After the War.				
J. Gerardi.	9	2	45	4
Engineering Drawing and th				
Shop.				
H.C. Hesse.	6	2	42	13
Engineering Drawing as Seen By				
A Consulting Engineer.				
M.C. Nichols.	14	3	50	23
Engineering Drawing in Engi-				
neering Education.				
R.P. Hoelscher	16	3	52	8
Engineering Drawing in Poland.				
W.M. Aulich.....	2	2	38	1
General Education Through				
Drawing.				
C.H. Springer	16	1	52	5
Graphics for Indust				
M.J. Bergen.	15	3	51	16
Graphics for Non-Engineers.				
R.W. Parkinson.	18	2	54	35
Humanistic-Cultural Cont				
butions of Drawing.				
F.G. Higbee.	12	1	48	8
Let's Face the Music: A				
Re-Evaluation.				
J. Gerardi.	16	3	52	7
Men on the Boards.				
E.A. Kehoe.	18	2	54	7
National Survey of Drawing.				
Report	6	3	42	2
Report.	7	1	43	9
Objectives of Drawing.				
R.P. Hoelscher.	13	1	49	13

A Positive Program.				12
Relating Drawing Courses.				
J.C. McGuire.	10	2	46	27
A Reappraisal of Engineering				
R.P. Hoelscher.	18	2	54	12
Some Gleanings from Commercial				
Art-Hints to the Harried.				
Standards of Excellence.				
H.D. Orth.	5	1	41	7
Standards of Practice.				
F.G. Higbee.	7	2	43	11
Stimulating Student Interest				
F.G. Highee.	5	3	41	15
Student Efficiency on the 31				
Board.				
J. Gerardi.	5	3	41	15
Survey of Supervised Class				
Hours Required in Graphics				
Courses.				
T.C. Brown.	15	1	51	13
What's in a Name: Engineering				
Drawing.				
S.J. Berard.	2	1	38	16
ENGINEERING DRAWING DIVISION.				
See Division of Engineering Drawing and				
Descriptive Geometry and Division of EngineeringDesign Graphics.				
ENGINEERING EDUCATION.				
Concept of the "Graphical				
John T. Rule	29	1	65	32
Contribution of Drawing.				
R.P. Hoelscher	16	3	52	8
Course Development to Meet				
Present Needs.				
R.S. Paffenbarger	17	1	53	26
Creative Expression in				
Engineering.				
R.L. Ritter, A.E. Lemke, and R.J. Panlener.	24	2	60	19
Drafting - The Key to				
Engineering.				
E.L. Monson.	18	1	54	30
Drawing As A Basic Study.				
S.S. Radford.	14	3	50	10
Drawing As Engineering				
Education.				
A.S. Levens	4	3	40	17
Drawing in Engineering				
Education.				
C.L. Svensen.	12	3	48	6
Drawing is the Essence of				
Engineering.				
C.V. Mann.	4	2	40	1
Drawing Teachers in the				
English Department.W.J. Streib.............. $18 \quad 3 \quad 54$15				
Educational Contributions of				
Drawing.				
F.G. Higbee.	4	3	40	11
Engineering Attitudes.				
C.E. Springer......	15	3	51	12
Engineering Drawing in Engineering Education - 1953				
Report of National Committee by Drawing Division. 1735				
Engineering Education and				
Engineering Graphics.				
Irwin Wladaver.............	28	3	64	26

A.C. McGuire................... 10 2- 27
of Engineering ng
ome Gleanings from Commercial Art-Hints to the Harried.
R.C. Carpenter.............. 18 1-54 31
H.D. Orth.................... 51741
tandards of Practice.
mulating Student Interest
F.G. Highee...............

Board.
J. Gerardi.................... $5 \quad 3 \quad 4115$

Survey of Supervised Class
Hours Required in Graphics Courses.
$\begin{array}{llll}15 & 1 & 51 & 13\end{array}$ in a Name: Engineering prawing.
S.J. Berard.................. 216

ENGINEERING DRAWING DIVISION.
See Division of Engineering Drawing and
Descriptive Geometry and Division of Engineering Design Graphics.

ENGINEERING EDUCATION.
Concept of the "Graphical
Mind".
29-1 $65-32$
R.P. Hoelscher............... . 163052

Developent Lo Meet
R.S. Paffenbarger.......... 17 1 5326

Creative Expression in
ineering
and R.J. Panlener........... 24206019
Drafting - The Key to
Engineering.
E.L. Monson.................. $18 \quad 1 \quad 5430$
Drawing As A Basic Study.
$14 \quad 3 \quad 50 \quad 10$
Drawing As Engineering
A.S. Levens................. . . 4304017

Drawing in Engineering Education.
C.L. Svensen................. 12 3- 6

Engineering.
C.V. Mann.................... 4 2 40 1

號 the
W.J. Streib.................. 18 54 15

Educational Contributions of Drawing.
ngineering Attitudes.
C.E. Springer................. $15 \quad 3 \quad 5112$

Engineering Drawing in Engi-
neering Education - 1953
mittee by Drawing Division. $17 \quad 3 \quad 537$
Engineering Education and
Irwin Wladaver.............. $28 \quad 3 \quad 6426$

Where Shall We Draw the Line?
C.J. Chaffins

17
538

About the Goals of Engineering Education.
E.D. Black.................... $30 \quad 2 \quad 6625$

Animated Film Teaching vs.
Lecture-Demonstration Method.
E.R. Glazener and D.C.

Nystrom...................
Assessment of the Goals of
Engineering Education in the
U.S. Report of the Panel on Engineering Education -
Excerpts..................... 31 1 6729
Change, Progress, and Controversy.
(Editorial), E.D. Black.... 3020665
Communication Needs in Engi-
neering Education.
J.S. Johnson....... $30 \quad 1 \quad 6611$

Cultural Clods or Illiterate
Technicians; Can We Mix the Two?
W. B. Rogers................. $30 \quad 1 \quad 666$

The Educational Side of Engi-
neering. (Part of an Ad-
dress given in 1931 by) Thomas E. French............ 4037640
The Educational Value of Graphics. Frank A. Heacock............ $30 \quad 3 \quad 6623$
"Graphics Extracts" as edited by E.W. Jacunski............. $30 \quad 1 \quad 6626$
High Time to Teach Again.
W.G. Devens................. $35 \quad 2 \quad 7112$

A Letter on Wladaver VS Lindgren.
Wayne Felbarth.............. 30 206628
A Letter to the Editor.
C.Ernesto S. Lindgren...... 30
2
The New Look in Engineering Education.
H.C. Spencer................ 192585

Perspective: A Case for Experienced Professional Engi-
neers as Teachers of Engineer-
ing Freshmen.
A.H. Mallon.................. 3024

Perspective - A Short Glance Backward and A Long Look Ahead.
W.J. Luzadder. 30 1 6625

More Engineering Graduates.
W.G. Devens................... 351740

Thomas Newcomen: The Inventor
of the Steam Engine.
C.T.G. Boucher................ $36 \quad 2 \quad 728$

Non-Engineers Need Graphics Too.
E.T. Ratledge................
39 $2 \quad 75$
Science Education vs Engineering Education - A Solution to This Dilemma? Luisa Bonfiglioli........... $31 \quad 1 \quad 6717$
Some Comments on the Goals Report.
E.G. Pare'.................... $30 \quad 1 \quad 6626$

A Study of Desirable Requirements for Beginning Draftsmen.
L.C. Christianson and E.H.

Wooirych.................... 19254542
Technion: Israeli Institute of Technology - A Visit With Friends.
B.L. Kreimer.................. $36 \quad 1 \quad 7216$

There Does the Expressway for Higher Education Lead Us?
E.D. Black................... 3326696

Will Technologists Replace Engineers? Bob Stedfeld................. $35 \quad 2 \quad 7113$
What is the Purpose of Design? Frank Mosillo............... 42 3 7837

ENGINEERING GRAPHICS

The Axonometric Representation of N -Dimensional Figures, Ole P. Arvesen, The Norwegian Institute of Technology. (Original Paper
Translated by A.L. Bigelow and S.M. Slaby.............. $27 \quad 3 \quad 6341$
Axonometry.
Wayne L. Shick. $23 \quad 3 \quad 5913$
A Balanced Course in Engineering Graphics.
Lyle E. Young. $20 \quad 1 \quad 5660$
Basic Principles for the
Design of Drawing Courses
to Comply with the 1955
Evaluation Report.
Charles J. Vierck........... $22 \quad 1 \quad 5818$
What Do You Believe?
Stuart C. Allen............... 202549
Cartography -- A Graduate
Course in Graphics.
J.G. McGuire................. . . 17 I 53

Bringing Electronics Into
Engineering Graphics.
Harry Schwarzlander......... $25 \quad 3 \quad 6124$
Chemistry and Geometry.
Leonard Kaplan............... $25 \quad 3 \quad 6119$
The Christian Approach to
Vexing Vectors.
Marshall J. Christian...... $28 \quad 3 \quad 6411$
Concept of the "Graphical Mind".
John T. Rule.
Creative Design in Engineering Graphics.
Ernest R. Weidhaas.......... 27206312
Creative Problems for Basic
Engineering Drawing.
Matthew McNeary.............. 20115648
Descriptive Geometry Courses
Which Comply with the Eval-
uation Report.
Raymond A. Kliphardt........ $21 \quad 1 \quad 5722$
Design for Barkin' Up the
Wrong Tree.
Irwin Wladaver. $29 \quad 1 \quad 6521$
The Development of Graphical Representation.
Frederick G. Higbee.
$22 \quad 2 \quad 58 \quad 14$
Drafting Problems in Industry and Some Solutions.
R.W. Pearson................. $20 \quad 2 \quad 5621$

A Drawing Course for Science Majors. Eugene G Par
Encouraging Creativity in Engineering Graphics. Harold L. Dillenbeck........ $26 \quad 2 \quad 6218$
Encouraging Creativity in Graphics.
Harold L. Dillenbeck....... 29

Why Engineering Drawing? Frederick G. Higbee. .	29	1	65	19
Engineering Education and				
Engineering Graphics.				
Irwin Wladaver.	28	3	64	26
Engineering Graphics - Genesis				
to Engineering Development. Earl D. Black.	27	3	63	17
Engineering Graphics for the "Philosopher" or the "Plumber".				
Earl D. Black.	26	3	62	16
Engineering Graphics in				
Norway and the USSR.				
Steve M. Slaby.	25	1	61	17
The Engineer's Language --				
Drawing.				
Robert J. Ernest	29	1	65	17
An Ex-Editor Turns Critic or				
Hindsight is Easier.				
Irwin Wladaver.	26	1	62	42
Fog, Vision, or Insight.				
Earl D. Black.	29	3	65	3
Forming Tool Calculations				
Graphic and Algebraic.				
J.H. Porsch. Part I.	17	2	53	30
Part II	17	3	53	30
The Function of Graphic and				
Illustrative Languages in				
the Communication Process.				
Robert A. Sencer...	25	2	61	16
The Future Course of Engineer-				
ing Graphics from the				
Faculty Viewpoint.	26	2	62	22
Future Development in Engineer-				
ing Graphics (Interim Report				
1962-1963), Future Develop-				
ment Committee.	27	2	63	36
The Function of Drawing:				
Creativity.				
Wayne L. Shick.	20	3	56	46
Interim Report of the Future				
Development Committee.				
Carson P. Buck.	29	2	65	46
Gaspard Monge and His Effect				
On Engineering Drawing. (Editorial)				
Mary F. Blade..........	28	3	64	2
Geometry and Heat Transfer in				
A Helical Coil.				
Henry W. Sullivan	27	2	63	28
Graphics in Engineering				
Education.				
F.A. Heacock	18	1	54	26
The New Graphics.				
J. Gerardi.	29	2	65	15
Problems in Graphical Analysis				
of Mechanisms.				
Frank A. Heacock.	22	2	58	48
Graphical Analogues of				
Mathematical Processes.				
John F. Twigg.	22	1	58	24
Graphical Field Mapping.				
John F. Calvert.	21	2	57	35
Graphical Method in Error				
Analysis of the Photogrammeti				
Problem.				
Summer B. Irish.	26	3	62	19
Graphical Solution for Super-				
sonic Flow Past A Pointed				
Axisymmetrical Body.				
G. Fischer......	26	2	62	43
Graphics -- An Aid in Planning,				
Manufacturing and Sales.				
J.L. Gilmour...	23	2	59	25

ENGINEERING GRAPHICS (continued)

Graphics and Its Relation to the Development of Guided Missiles.
Eugene V. Fesler............. $23 \quad 2 \quad 5923$
Graphics and the Undergraduate.
Ear1 D. Black.................
Graphics Applied to the Craft of Bells and Carillons.
Arthur L. Bigelow........... $20 \quad 1 \quad 5610$
Graphical Analysis of a NonLinear Differential Equation. Charles J. Baer............. 27116324
Graphic Science - A New and Challenging Frontier. Alexander S. Levens......... $24 \quad 3 \quad 6010$
Graphics Shock-Wave. Rex W. Waymack. $26 \quad 1 \quad 6215$
Opportunities and Responsibil-
ities of Graphics in Engineering Education.
J.T. Rule...................... $17 \quad 2 \quad 537$

How to Win Friends and Influence a Profession. Jasper Gerardj............... $26 \quad 2 \quad 62 \quad 39$
On the Importance of Drafting in Engineering Development. Charles A. Chayne.......... $23 \quad 2 \quad 598$
Integration and Graphics.
Irwin Wladaver................
In 1111
Inter-Disciplinary Challenges for Graphics.
Steve M. Slaby. 26 3. 6240
Introducing Design Considerations into Drawing Courses. Harold C. Messinides....... 211554
What Does an Engineer Have to Know? (Editorial) Irwin Wladaver.............. $21 \quad 2 \quad 5711$
Multi-View Drawing by the Direct Method. David L. Cook. $21 \quad 2 \quad 5734$
National Graphics Study in Progress..
$\begin{array}{llll}27 & 1 & 63 & 50\end{array}$
The New Breed. Earl D. Black.................. $28 \quad 3 \quad 643$
Objectives of Engineering Drawing in Engineering Education. R.R. Worsencroft............ $21 \quad 1 \quad 5732$

Objections to the Project
Method of Teaching Engineering Drawing.
Drawing. McFarland. $20 \quad 1 \quad 5638$
James D.
Operationa1 Symbolism for Graphical Processes. Steven A. Coons............. $21 \quad 3 \quad 5727$
Perspective - A New Basic
Method of Direct Projection. Andre Halasz................ 2025042
Perspectives in Engineering Graphics. Newman A. Ha11. 2711636
A New Perspective Method.
Wayne L. Shick................. $22 \quad 1 \quad 58$
Problems Confronting the Teacher of Engineering Drawing. Eugene G. Pare'............... $22 \quad 1 \quad 5820$
Should Engineers Be More Proficient in Instrumental Drawing or Freehand Sketching? J.R. Simonia................. 23250210

Be Susceptible to the Graphical Approach.
Approach.
Douglas P. Adams............. $29 \quad 2 \quad 6545$

Projections for a Geodesic
Sphere.
Homer L. Puderbaugh. $\quad 27 \quad 1 \quad \begin{array}{lllll} & 27 & 28\end{array}$
Reappraisal of Engineering Drawing.
R.P. Hoelscher................ $18 \quad 2 \quad 54.12$

Sketched Exploded Views as a
Product Designer's Tool.
Richard J. Rademacher...... $29 \quad 3 \quad 65 \quad 7$
About Scales.
Sandor T. Halasz............. $28 \quad 3 \quad 6422$
Status of Engineering Drawing
1957 Survey.
Harren J. Luzadder. $22 \quad 1 \quad 5814$
$\begin{gathered}\text { Theoretical } \\ \text { Steve M. Slabhics. }\end{gathered}$................... $24 \quad 3 \quad 6021$

Brief Survey of Reproduction
Processes.
H.P. Skamser and R.L. Paul

| mser art I.............. | 19 | 1 | 55 | 32 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Part II........... | 19 | 2 | 55 | 23 |

Engineering Drawing: Dynamic? or Static?
J.E. Shigley................... $19 \quad 1 \quad 5513$

Graphical Method of Plotting
Electron Trajectories in
Crossed Electric and Mag-
netic Fields.
Ray Kinslow................... $19 \quad 2 \quad 5511$
Graphics in an Expanding
Scientific Age.
A.S. Levens..................... $19 \quad 1 \quad 5524$

Graphics in Engineering Practice.
O.W. Plotter................ 19.2535

Graphics - The Cursive Writing of Science.
D.P. Adams. 19 358

ASEE's 50th Anniversary - A Look into the Future. A.F. DeVaney................. $41 \quad 3 \quad 7711$

Cartesian Coordinates in Engineering Drawing. Ed Wilks.....................
Comments on Future Directions. S.M. Slaby.................

Claude Crozet - A Career in Engineering Graphics. B.W. Boguslavsky............ 41227728

Descriptive Geometry, Projective Geometry, and All Geometry: Letters to the JOURNAL from V.P. Borecky and C.E.S. Lindgren......... $31 \quad 2 \quad 67 \quad 4$
Engineering Graphics at the University of Arizona. R.M. Barnett.................. $41 \quad 1 \quad 7736$

Encoding the Prototype: The Engineering Model. Alan Krigman. $31 \quad 2 \quad 6715$
Engineering Graphics Application at LTV Aerospace Corp. R.D. Furay

Engineering Graphics at National Taiwan University.
Fu-Chun Wang. $\mathrm{un}_{2} 307859$
Engineering Graphics in the Two-Year College. Educational Relations Committee...............
Engineering Graphics - An Updating Report. Menno DiLiberto................ $39 \quad 2 \quad 75 \quad 27$
Engineering Graphics Passe'? No! R.H. Hammond

ENGINEERING GRAPHICS (continued)

Freshman Engineering Curricu-				
lum Criteria R.H. Hammond.	41	3	77	18
Graphics in the United Kingdom.				
Historical Development of				
M.H. Land.	40	2	76	28
Improving Visualization --				
Fact or Fiction?				
Paul S. DeJong	41	1	77	
Orthographic Views.				
B.W. Boguslavsky	40	2	76	20
The Ohio Association for				
Engineering Graphics.				
C.H. Keith.	42	2	78	
Opinions of Educators and				
Engineers on Specific Areas				
in Engineering Graphics.				
E.C. Schamerhorn.	30	1	66	17
The Relevancy of Engineering				
Graphics.				
J.H. Earle.	33	3	69	
Survey: Which Degree Departments Include Graphics as				
a Requirement? ${ }_{\text {C.E. Hall and }}$ C.T. Sands..	39	3	75	10
Time For a Change; Wi				
W. B. Rogers.	36	1	72	27
The Use of Graphics in Engi-				
neering Analysis.				
W.G. Lambert..	30	1	66	15
Uses of Graphical Communication				
in Industry.				
W.C. Killen.	30	1	66	13
What is Basic Graphics?				
B.L. Wellman.	31	3	67	12
What Others are Doing in				
Graphics in Foreign Countries.				
C.E. Hall.	40	2	76	

ENGINEERING GRAPHICS COURSES.
A Balanced Course in Engineering Graphics.
Lyle E. Young. $20 \quad 1 \quad 5660$
Course Content in Basic Engineering Graphics. James S. Rising.............. $22 \quad 3 \quad 58 \quad 32$
Course Development in Relation to An Engineering Curriculum and Future Needs of the Young Engineer. A.P. McDonald. $22 \quad 2 \quad 5849$

Engineering Graphics Course Content Development Study, (Condensed by Earl D. Black) Paul M. Reinhard............ $29 \quad 3 \quad 6513$
Honors Course in Engineering Graphics. Steve M. Slaby. $24 \quad 2 \quad 6012$
Descriptive Geometry Courses Which Comply with the Evaluation Report. Raymond A. Kliphardt....... $21 \quad 1 \quad 5722$
A Drawing Course for Science Majors. Eugene G. Pare'............. $20 \quad 1 \quad 5667$
Effective Programs in Engineering Graphics - How Shall They Be Taught. Randolph Hoelscher......... $24 \quad 1 \quad 6019$

```
The Engineering Drawing Course
    at the U.S. Air Force
    Academy.
    John W. Coffey, Jr.......... 22. 3 58 35
What Engineering Departments
    Expect From the Drawing
    Courses.
    Herman C. Hesse........... 22 1 58 28
Engineering Graphics Course
    Content Development Study
    Paul M. Reinhard........... 25 1 61 21
The Engineering Fundamentals
    Course at the United States
    Military Academy.
        Robert H. Hammond........... 27 1 63 38
The Future Course of Engineer-
        ing Graphics from the Faculty
        Viewpoint.
        Steven Anson Coons......... 26 2 62 22
Graphics Program at Kansas
    State University.
    A.E. Messenheimer.......... 24 1 60 25
Integration - Trend or Fad.
        Carson P. Buck............. 20 2 56 39
Modernization of Basic Drawing
        Courses.
        Klaus E. Kroner............ 22 2 58 39
The Objectives and Content of
        Engineering Graphics Courses
        Melvin L. Betterley........ 26 3 62 56
Progress Report of Engineering
        Graphics Course Content Study.
        Paul M. Reinhard........... 26 2 62 25
Report of Course Content.
        Matthew McNeary............. 25 1 61 12
An Outline for an Integrated
        Course.
        Carson P. Buck............. 22 1 58 46
Teaching Introductory Nomo-
        graphy in Basic Graphics
        Course.
        Alexander S. Levens........ 20 2 56 35
```

ENGINEERING SCHOOLS AND COLLEGES.
University of California,

Berkeley	22	2	58	50
Cornell University	21	2	57	42
Universities of the Far East.				
F.E. Jordan.	21	1	57	35
General Motors Institute	21	3	57	48
Welcome to Illinois Institute of Technology.				
The Rice Institute.				
A.P. McDonald.	20	1	56	55
Wayne State University, Detroit	22	3	58	23
ENGLAND, STANDARD PRACTICE		3		

EQUIPMENT FOR DRAWING ROOMS.
Desirable Characteristics of Lighting. J.O. Kraehenbueh1........... 61422

Drafting Room Facilities. H.H. Jordan................... 434021

Drawing Instrument and Fine Papers. E.F. Carr.................... 4154015

Fluorescent Lighting. G.J. Hood.................... 63424

EQUIPMENT FOR DRATING ROOMS (continued)

FRENCH, THOMAS E.

Lamme Award. F.G. Higbee.	7	3	43
Personality Sketch.			
C.L. Svensen. . .	9	1	45

GEOLOGY, APPLICATIONS IN

GEOMETRIC CONSTRUCTIONS AND PROCEDURES:
INGENIOUS SOLUTIONS OF PROBLEMS.
Another Geometric Solution For Problems Involving Specified Angles.
A1 Romeo...................... $34 \quad 3 \quad 70 \quad 37$
Another Method to Solve
Dihedral Angles.
H. Niayesh.................... 352011

Constructing Axonometric Scales. $38 \quad 3 \quad 74 \quad 15$
John Denison..................
ive and Shadow by Near Point Source of Light.
N. Vittal..................... $31 \quad 3 \quad 6738$

A Criterion of Correctness of Single View Graphical Representation. Abram Rotenberg.............. $36 \quad 2 \quad 72 \quad 46$
Design of the Geometry of Space Structures Using Graph Theory and Matrix Transformations.
Mary F. Blade................ 36302
Determination of Dihedral Angles of Rectangular Hoppers.
C. Samonov............... 332469

GEOMETRIC CONSTRUCTIONS AND PROCEDURES (continued)

Skew-Line Problems for Connectors of Given Length and Angle.
A.J. Nechi................. $34 \quad 2 \quad 7035$

Set Notation in Intersection Problems Ed Wilks.................. $32 \quad 2 \quad 6832$
A Solution for Three Unknown Forces.
J.P. Oliver. $30 \quad 1 \quad 6636$

Solution to a Class of Problems Involving Dihedral Angles. Thomas Thorsen............. 34117039
Solution of the Tripod Problem Using Reciprocal Vectors. L.W. Thrasher.............. 33206950

The Stereographic Net as a Graphical Aid. W.G. Stinson.............. 401020

The Stereographic Net in Structural Geology Problems Involving Rotation. W.G. Stinson.............. 41274

Trigonometric Formula for Rectangular Hopper Diahedral Angle.
R.T. Rauch.................. 35117124

Two Remarkable Constructions. Luisa Bonfig1ioli

3216842
Trisection Remains a Problem. H. McCutchen and K.E.Botkin $30 \quad 1 \quad 66$

Using Inversion to Solve a Construction Problem. J. Charit................. $40 \quad 3 \quad 7637$

Vector Analysis Applied to Graphics. F.E. Gorczyca.............. $33 \quad 1 \quad 6949$

Visual Illusion or Ambiguous Drawing? Abram Motenberg. $36 \quad 1 \quad 7232$

GIESECKE, FREDERICK E.
Award
1531

GRADING. See Testing and Grading.

GRADUATE WORK
See Advanced Drawing and Research.

GRAPHICAL COMPUTATION.
See also GEOMETRIC CONSTRUCTIONS.

A Graphical Computation of				
Hyperbolic and Circular				
Functions of a Complex				
Argument.				
D. Mazkewitsch............ 2	23	1	59	27
A Graphical Method for Working				
Charles Baer.............. 2	26	2	62	16
The Graphic Solution of Sim-				
with More Than Two Variables.				
On Graphical Solutions for				
First Order Differential				
Equations.				
Forrest Woodworth.......... 26	26	2	62	48

GRAPHICS AND A LAWSUTT

$$
\text { G.J. Hood. } 14 \quad 1 \quad 50 \quad 17
$$

GRAPHICS RE-EXAMINED.

$$
\text { J.T. Rule......................... } 11 \quad 1 \quad 4711
$$

HIGBEE, FREDERICK G.

| Distinguished Service Award... | 14 | 3 | 50 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Response. F.G. Higbee........ | 14 | 3 | 50 | 9 |
| Personality Sketch. J.M. Russ. | 16 | 1 | 52 | 7 |

HIGH SCHOOL-COLLEGE RELATIONS.
Basis of Credit for High School Drawing.
R.N. Worsencroft............. 132429

Blue Print Reading in the Technical High School.
H.B. Cobaugh................. 101465

College Credit for High School Drawing.
L.O. Johnson and I. Wladaver 16205212

Comments on a National Survey.
H.J. Shufelt................ 7243

High School and College Drawing.
R.T. Henning.
6 1426
The Mechanical Drawing Association of New England.
A.L. Coyne.................. 111
M.I.T. Summer Course for High School Teachers. J.T.Rule and A.L. Coyne.... 424013

Preparation for College Drawing.
C.L. Thorndike............... 1214

Require High School Drawing.
R.R. Irwin.................... 12254825

Secondary School Drawing as Viewed by the College Teacher
$\begin{array}{lllll}\text { S.J. Berard...................... } & 3 & 3 & 39 & 2 \\ \text { Discussion. R.P. Hoelscher } & 3 & 3 & 39 & 5\end{array}$
Secondary School Drawing for Industry.
H.S. Campbell............... 42403

Specialized College Training for R.CA.
J.N. Arnold and F.M.

Ta11madge.................... $9 \quad 1 \quad 4513$
Standards Are Tools.
T.W. Ragan.................... $15 \quad 1 \quad 5120$

Training for Defense.
F.W. Slantz................... 51

Communication: Stating Unambi-
guously to Students and to
the Public the Goals and
Expectations of Mechanical
Technology College Program.
E.D. Davison................. 323644

Descriptive Geometry for
Prospective Technology
Teachers.
A1 Romeo...................... $33 \quad 2 \quad 6956$
Graphics in the High School.
L.J. Nypan.................. . . $31 \quad 1 \quad 6715$

A Technical One Year Drawing
Course for College Prepara-
tory Students: A Proposal by
the Educ. Rel. Committee.
R. Lang, Chr................. $30 \quad 1 \quad 6623$

HISTORY OF THE DIVISION.

History of the Engineering				
Design Graphics Division.				
Part I,..from 1928	40	3	76	28
Part II	41	1	77	30
Part III	41	2	77	30
Part IV,..through 1959	41	3	77	42
Years 1959-1978: to be				
HOELSCHER, RANDOLPH PHILIP				
Distinguished Service Award... 18305419 Personality Sketch.				
C.H. Springer	17	1	53	20

HOOD, GEORGE J.
Distinguished Service Award... $16 \quad 3 \quad 52 \quad 6$
Personality Sketch............. 1525159

INDUSTRY - COLLEGE RELATIONS

Advanced Drawing in Industry.				23
Application of Technical				
Sketching.				
H.H. Katz	10	3	46	
Checking Drawings.				
H.H. Katz.	10	2	46	16
Drafting in Steel Fabrication. 15020518				
Drafting Procedures that Reduce				
Costs.				
A.F. Townsend.	16	3	52	47
Drawing in the Defense Indus-				
A.J. Altz	5	3	41	2
Drawing for Life and Industry.				
D. Green............	10	1	46	13
Drawing for National Defense.				
W.G. Smith.	4	3	40	

Curtiss-Wright Engineering Cadette Program at Purdue, 1944-1945.
S.B. Elrod.................... . $9 \quad 3 \quad 4515$

Descriptive Geometry in Industry.
F.T. Warner................... 112475

Drawing for National Security.
F.W. Slantz..................
S.
The Engineering Department at Nork.
L.C. Cole..................... 61313

Engineering Drawing as Seen by a Consulting Engineer. M.C. Nichols...............

Good Engineering Information for Production.
C.A. Koepke.................. 1420

Graphics for Industry. M.J. Bergen.................. 153516

Industrial Application of Drafting Standards. L. DeMause.................... 161515

Industry Evaluates Our Students A.S. Levens.................. .

Lettering in Industry. A.L. Ferry..................... 43402

```
    Preparing Students for Indus-
        trial Drafting.
        J. Gerardi.................. 343912
Requirements of Industry
    W.L. Senger.................. 6142
Engineering Drawing in Air-
    craft Design.
    M.E. Aldrich................. 17335
Engineering Drawing in Atomic
    Engineering.
    E.H. Brock. . . . . . . . . . . . . . . . \(18 \quad 1 \quad 5433\)
Industrial Drafting Looks at
        Industrial Education.
        Arthur H. Rou................ 22155851
Industrial Relations Committee
        Report.
        Ralph S. Paffenbarger...... 21225712
Revive Graphics.
        Wayne L. Shick.............. 23159
A Survey of Utilization of
        Training in Engineering
        Drawing by Engineering
        Graduates Employed in
        West Coast Industries.
        R. Wallace Reynolds........ \(27 \quad 2 \quad 6320\)
Where Shall We Draw the Line?
    C.J. Chaffins
\begin{tabular}{llll}
17 & 3 & 53 & 8
\end{tabular}
INDEX
```

```
Index, Journal of Engineering
```

Index, Journal of Engineering
Drawing. Index, 1936-52.
Drawing. Index, 1936-52.
Published as Vol. 16, No.3,
Published as Vol. 16, No.3,
Supplement to Nov. 1952.
Supplement to Nov. 1952.
8 pp........................... 17 1 53
8 pp........................... 17 1 53
Index to the Past and to the
Index to the Past and to the
Future.
Future.
Irwin Wladaver............. 17 2 53 14
Irwin Wladaver............. 17 2 53 14
Index for 1953-1954
Index for 1953-1954
(Insert Sheet)
(Insert Sheet)
I. Wladaver................... 19 1 55
I. Wladaver................... 19 1 55
Index for 1955
Index for 1955
I. Wladaver................... 19 3 55 42
I. Wladaver................... 19 3 55 42
Index for 1955-1965
Index for 1955-1965
Supplementary Issue to
Supplementary Issue to
Vol. 30. (unnumbered)
Vol. 30. (unnumbered)
E.D. Black \& I. Wladaver... }30\mathrm{ 1s }6
E.D. Black \& I. Wladaver... }30\mathrm{ 1s }6
Index, Volume 30
Index, Volume 30
E.D. Black, ed............. 30 3 66 65
E.D. Black, ed............. 30 3 66 65
INSTRUCTION. See Teaching.
INSTRUMENTS. See Equipment for Drawing Rooms.
INTEGRATION OF DRAWING AND DESCRIPTIVE GEOMETRY. James S. Rising............. 123416
ISOMETRIC. See Pictorial Representation.
JOHANSSON AND HIS PRECISION GAGES.
Report of a Talk.
G.L. Dannehower............ $3 \quad 3911$

```

JOURNAL OF ENGINEERING DRAWING AND GRAPHICS.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{The Birth of the Journal of} \\
\hline Clair V. Mann..... & 20 & 3 & 56 & \\
\hline \multicolumn{5}{|l|}{Engineering in Review.} \\
\hline Charles L. Skelley. & 20 & 3 & 56 & 26 \\
\hline An Expression of Appreciation. & & & & \\
\hline Frank A. Heacock. & 20 & 3 & 56 & \\
\hline \multicolumn{5}{|l|}{Nearly 79, Always Busy, and} \\
\hline George J. Hood & 20 & 3 & 56 & 26 \\
\hline \multicolumn{5}{|l|}{Journal of Engineering Graphics.} \\
\hline \multicolumn{5}{|l|}{The New Name.} \\
\hline Wayne L. Shick & 22 & 3 & 58 & 10 \\
\hline \multicolumn{5}{|l|}{Twenty Years Ago.} \\
\hline Frederick G. Higbee & 20 & 3 & 56 & 22 \\
\hline \multicolumn{5}{|l|}{Twenty Years Later.} \\
\hline John M. Russ & 20 & 3 & 56 & 23 \\
\hline
\end{tabular}

\section*{KINEMATICS}


LETTERING .
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Adventures in Lettering.} \\
\hline Justus Rising, Part I. & 5 & 1 & 41 & 2 \\
\hline Part II & 5 & 2 & 41 & 2 \\
\hline \multicolumn{5}{|l|}{Alphabet for Left-Handers. \({ }^{\text {d }}\)} \\
\hline M.L. Betterley. & 14 & 1 & 50 & 5 \\
\hline \multicolumn{5}{|l|}{The Art of Lettering.} \\
\hline C.L. Svensen. & 5 & 2 & 41 & 15 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Developing Responsibility and Initiative Through Lettering.}} \\
\hline & & & & \\
\hline Grading Lettering & & 3 & & \\
\hline R.R. Worsencroft & 5 & 2 & 41 & 6 \\
\hline ttering in Industry. & & & & \\
\hline A.L. Ferry & 4 & 3 & 40 & 2 \\
\hline
\end{tabular}

LIGHTING. See Equipment for Drawing Rooms.

\section*{LIMERICK LAUREATES.}
\begin{tabular}{|c|c|c|c|c|}
\hline Limerick Laureates (samples) & 39 & 1.2 & 75 & 44 \\
\hline Limerick Laureates. & 39 & 3 & 75 & 33 \\
\hline Limerick Laureates & 40 & 2 & 76 & 45 \\
\hline Edited by Garland Hilliard & & & & \\
\hline imerick Laureate. & & & & \\
\hline Mary Jasper & 41 & 1 & 77 & 46 \\
\hline
\end{tabular}

LINE SHADING MECHANITCAL OBJFCTS.
T. Tschudi................... 1124710

MACHINE DESIGN. See Design.

MANN, CLAIR V.
Biographical Sketch
L. C. Christianson.......... \(34 \quad 3 \quad 7030\)

McCULLY, HARRY M.
In Memoriam.................... 12 1 4822

MEASUREMENT. See Dimensioning; Johansson

MEETINGS: See Division, Conferences and Meetings.

METHODS OF TEACHING. See Teaching Methods.
METRICATION .
ASEE Members Face the Metrication Issue.
K.E. Kroner. ................. \(40 \quad 307611\)

A Comparative Study of Metric and Unified-U.S. Fasteners. \(\begin{array}{llllll}\text { Robert Shaffer and C.J.Baer } & 33 & 1 & 69 & 56\end{array}\)
The Decimal Inch.
Russe11 Hastings............ 31206711
The JOURNAL Goes to Metric
Size............................ 42278
Measure for Measure - A
Universal Language for
International Standards.
F.J. Laner.................... 3817423

Metric Conversion - The
Imaginary Problem.
D.W. McAdam. .................. 42120

Metric Integration For Basic
Engineering Courses.
W.G. Devens.................... 3827414

Metric Scales.
\begin{tabular}{llll}
38 & 2 & 74 & 48
\end{tabular}

Metrics in the Marketpiace.
L.D. Goss..................

Public Law 94-168, The Metric Act of 1975
\begin{tabular}{llll}
42 & 2 & 78 & 30
\end{tabular}
\(\begin{array}{llll}41 & 2 & 77 & 55\end{array}\) Scient Using Scientific Notation.
R.E. Barr.................... \(41 \quad 3 \quad 7739\)

The Result of Complete Dimensional Reform.
A.C. Bemis................... \(30 \quad 2 \quad 6656\)

The Use of SI Units in Descriptive Geometry. F.M. Croft.................... 42227816

We've Got Those Metrication B1ues!
F.O. Leide1.................. \(41 \quad 1 \quad 7721\)


MILITARY GRAPHICS.
L.E. Schick................... . . \(13 \quad 2 \quad 4911\)

MISCELLANEOUS .
Analysis, Synthesis, and EyeWash.
Irwin Wladaver.............. 262662
Answer to Some Questions.
Herbert \(W\). Zimdars.......... \(20 \quad 1 \quad 5632\)
Communication and Work.
Wayne L. Shick............... \(22 \quad 3 \quad 5810\)
Crossword Puzzle.
\(20 \quad 2 \quad 56 \quad 50\)

The Engineer: Leader of Men
Wayne L. Shick.............. 231150
Draftsmen are Communicators,
Autogineer, GM Engineering
Staff, General Motors...... \(25 \quad 2 \quad 61 \quad 7\)

Excerpts from the Address
of C.V. Mann.
C.V. Mann.................... 2413

Feedback Needed (Editorial).
Mary F. B1ade............... 2712
The Function of the Engineer, Designer and Draftsman in Industry. William L. Healy. . . . . . . . . . \(21 \quad 1 \quad 5712\)
Graphic Requirement in High School and College. (Editorial), Wayne L. Shick. \(25 \quad 1 \quad 618\)
Graphic Science and the High School Teacher. Robert S. Lang............... 2510
Results of Mechanical Drawing Study. Donald P. Hoagland.......... \(25 \quad 3 \quad 61 \quad 23\)
Some Methods of Shading Engineering Drawings for Publication. Clifford H. Springer and Richard W. Reynolds......... \(22 \quad 2 \quad 5823\)
Trigonometric Truss (An Introductory Teaching Aid for Trigonometry). Werner F. Vogel and Klaus E. Kroner.............. \(26 \quad 3 \quad 6251\)
What Do You Believe? Stuart C. Allen............... \(20 \quad 2 \quad 5649\)
Where Do We Go From Here? Clifford H. Springer....... \(29 \quad 3 \quad 6519\)
MODELS. See Teaching Aids.

MONGE, GASPARD - Historical Essay. M. Dupin...................... \(5 \quad 3 \quad 4121\)

MOTIVATION. See Engineering Education; Teaching Methods.

NATIONAL SURVEY OF ENGINEERING DRANING.
\begin{tabular}{llllll} 
Report. . . . . . . . . . . . . . . . . . . . . . & 6 & 3 & 42 & 2 \\
Report. . . . . . . . . . . . . . . & 7 & 43 & 9
\end{tabular}

WAVY V-12 PROGRAM, WISCONSIM.
\[
\text { A.V. Millar..................... } 8 \quad 1 \quad 449
\]

\section*{NOMOGRAPHY}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
An Advanced Course in Graphics. \\
D. P. Adams.
\end{tabular} & 6 & 2 & 42 & \\
\hline Application of Graphics & & & & \\
\hline Nomography to Heat Transfer & & & & \\
\hline Studies. & & & & \\
\hline Wickliffe B. Hendry & 25 & 2 & 61 & \\
\hline A Calendar Nomograph. & & & & \\
\hline Melvin L. Betterley & 26 & 3 & 62 & 43 \\
\hline Computerized Nomogram Plotting. & & & & \\
\hline A1exander S. Levens. & 29 & 1 & 65 & 12 \\
\hline Elementary Nomography. & & & & \\
\hline J. Norman Arnold & 27 & 3 & 63 & 20 \\
\hline Get to the Point & & & & \\
\hline Richard W. Gohman. & 26 & 1 & 62 & 10 \\
\hline raphic Multiplication. & & & & \\
\hline J.F. Twigg. & 16 & 1 & 52 & 27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Graphics in Music.} \\
\hline \multicolumn{5}{|l|}{Introduction to Nomography in} \\
\hline \multicolumn{5}{|l|}{Engineering Drawing.} \\
\hline Richard G. Huzarski. & 22 & 2 & 58 & 40 \\
\hline \multicolumn{5}{|l|}{Life Test Nomogram.} \\
\hline Edward C. Varnum & 20 & 1 & 56 & 13 \\
\hline \multicolumn{5}{|l|}{Movable Scale Nomographs.} \\
\hline J. Norman Arnold. & 21 & 3 & 57 & 23 \\
\hline \multicolumn{5}{|l|}{Nomogram for Four Centered} \\
\hline \multicolumn{5}{|l|}{Ellipse Approximation.} \\
\hline M.E. Arthur. & 25 & 3 & 61 & 26 \\
\hline \multicolumn{5}{|l|}{Nomograms for VanDerWa11s'} \\
\hline \multicolumn{5}{|l|}{Equation for Real Gases and} \\
\hline \multicolumn{5}{|l|}{for the Corresponding Eqqua-} \\
\hline \multicolumn{5}{|l|}{tion for Ideal Gases.} \\
\hline Peter L. Tea. & 20 & 2 & 56 & 37 \\
\hline Nomography Award & 22 & 3 & 58 & 34 \\
\hline \multicolumn{5}{|l|}{Nomography: Do You Practice} \\
\hline \multicolumn{5}{|l|}{What You Teach?} \\
\hline Chet Foster. & 24 & 2 & 60 & 15 \\
\hline \multicolumn{5}{|l|}{Nomograph for \(\mathrm{xy}=\mathrm{z}\).} \\
\hline D.R. Mozkewitsch & 26 & 3 & 62 & 24 \\
\hline \multicolumn{5}{|l|}{Nomographic-Electronic Computation.} \\
\hline Douglas P. Adams. & 28 & 2 & 64 & 16 \\
\hline \multicolumn{5}{|l|}{Slide and Disc Calculators.} \\
\hline Clyde H. Kearns. & 22 & 1 & 58 & 29 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Teaching Introductory Nomo-}} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{graphy in Basic Graphics Courses.}} \\
\hline & & & & \\
\hline Alexander S. Levens. & 20 & 2 & 56 & 35 \\
\hline \multicolumn{5}{|l|}{Three-Dimensional Nomograms.} \\
\hline Douglas P. Adams... & 20 & 1 & 56 & 27 \\
\hline \multicolumn{5}{|l|}{Who Should Teach Nomography -} \\
\hline \multicolumn{5}{|l|}{A Mathematician or a} \\
\hline \multicolumn{5}{|l|}{Graphician?} \\
\hline Robert H. Hammond. & 23 & 2 & 59 & 14 \\
\hline \multicolumn{5}{|l|}{Workshop on Nomography.} \\
\hline A.S. Levens. & 28 & 2 & 64 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Chart Distortion in the Construction of Nomograms. \\
C.H. Kearns.
\end{tabular} & 19 & 1 & 55 & 16 \\
\hline Circular Nomogram, Value to an Industrial Firm. & & & & \\
\hline E.C. Varnum. & 19 & 3 & 55 & 36 \\
\hline \begin{tabular}{l}
Industrial Nomography. \\
D.S. Davis.
\end{tabular} & 19 & 3 & 55 & 34 \\
\hline Nomography Prize. D.P. Adams. & 19 & 3 & 55 & 32 \\
\hline Computer Produced Nomographs. E.V. Mochel. & 33 & 1 & 69 & 37 \\
\hline \begin{tabular}{l}
Transposing Nomograms to Slide Rules. \\
L.M. Weiner.
\end{tabular} & 31 & 2 & 67 & 20 \\
\hline \begin{tabular}{l}
Perspective by Proportional Scales. \\
J.P. Oliver
\end{tabular} & 31 & 2 & 67 & 16 \\
\hline The Use of Determinants in the Construction of Nomographs. C.E. Hall. & 38 & 2 & 74 & 39 \\
\hline NOTATION AND NOMENCLATURE FOR DE
GEOMETRY. . . . . . . . . . . . . . . . & SCR & & & \\
\hline
\end{tabular}

OBL.INQU DRAWING. See Pictorial Presentation.


PICTORIAL REPRESENTATION (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline A Vector Analysis Application to (Pictorial) Graphics. F.E. Gorczyca. & 33 & 1 & 69 & 49 \\
\hline Visibility of Points on the & & & & \\
\hline Isometric View of a Spher Jack Arwas. & 41 & 1 & 77 & 43 \\
\hline
\end{tabular}

POLAND, ENGINEERING DRAWING IN
W.M. Aulich

PORTER, FRANCIS M.
Personality Sketch.......... \(15 \quad 3 \quad 5111\)

PROBLEM BOOKS.
\begin{tabular}{|c|c|c|c|c|}
\hline Defects in Modern Education. W.G. Smith. & 2 & 1 & 38 & 4 \\
\hline Shortcomings of Layouts. & & & & \\
\hline H.C.T. Eggers. & 1 & 1 & 36 & 14 \\
\hline Problem Books, Yes or No. & & & & \\
\hline Irwin Wladaver and L.O. & & & & \\
\hline Johnson & 17 & 2 & 53 & 11 \\
\hline
\end{tabular}

PROBLEMS, PUZZLES, AND SOLUTIONS.
See Also Geometric Constructions.

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Fido's Chew-Problem. } \\
& \text { J.T. Rule........ }
\end{aligned}
\] & 17 & 3 & 53 & 39 \\
\hline A Graphical Solution. & & & & \\
\hline R.A. Jewette & 18 & 2 & 54 & 33 \\
\hline Cave Canem--Ana1ytical & & & & \\
\hline Solution. & & & & \\
\hline E. Blade. & 18 & 2 & 54 & 32 \\
\hline Fido Is A Dirty Dog. & & & & \\
\hline Irwin Wladaver.... & 18 & 1 & 54 & 20 \\
\hline Joe Doakes Finds the Central & & & & \\
\hline View. & & & & \\
\hline J.T. Rule. & 18 & 3 & 54 & 32 \\
\hline Forces in Space. & & & & \\
\hline L.M. Sahag. . & 8 & 2 & 44 & 2 \\
\hline Forces in Space: Non-Intersection and Non-Parallel. & & & & \\
\hline E.J. Marmo. & 12 & 2 & 48 & 11 \\
\hline Problem Solution. & & & & \\
\hline W.H. Bowes and Smith & 12 & 1 & 48 & 18 \\
\hline Melvin Hainey & 12 & 2 & 48 & 18 \\
\hline H.D. Orth. & 13 & 1 & 49 & 9 \\
\hline J.T. Rule & 11 & 3 & 47 & 16 \\
\hline \[
\begin{gathered}
\text { Projection of a Circle. } \\
\text { J.T. Rule............. }
\end{gathered}
\] & 16 & 3 & 52 & 27 \\
\hline Resultant of Couples in Space. E.J. Marmo. & 14 & 2 & 50 & 15 \\
\hline To Find the Shortest Horizontal & & & & \\
\hline Connector Between Two Skew & & & & \\
\hline Lines Using Only Two Given & & & & \\
\hline Views. & & & & \\
\hline Kenneth E. Haughton. & 20 & 1 & 56 & 70 \\
\hline To Find the Shortest Horizontal & & & & \\
\hline Connector Between Two Skew & & & & \\
\hline Lines Using Only Two Given & & & & \\
\hline Views. & & & & \\
\hline D. Mazkewitch & 22 & 1 & 58 & 55 \\
\hline Solution of a Cone Problem. & & & & \\
\hline J.A. DeMattos. & 10 & 3 & 46 & 28 \\
\hline Solution of a Cone Problem. & & & & \\
\hline Jack Lenhart......... & 10 & 3 & 46 & 29 \\
\hline Lulu Solution to Lulu Problem. & & & & \\
\hline Andre' Halasz.. & 23 & 3 & 59 & 17 \\
\hline Pivot for Linkage Models. & & & & \\
\hline Thomas Short & 29 & 1 & 65 & 33 \\
\hline Geometric Constructions. & & & & \\
\hline F.E. Giesecke. & 17 & 2 & 53 & 28 \\
\hline Graphic Solution for Complex & & & & \\
\hline Quadratic Roots. & & & & \\
\hline J.F. Twigg. . & 18 & 3 & 54 & 33 \\
\hline Graphical Solution for Non- & & & & \\
\hline intersecting and Nonparallel & & & & \\
\hline Forces in Space. & & & & \\
\hline E.J. Marmo... & 18 & 3 & 54 & 20 \\
\hline Simplified Calculations for & & & & \\
\hline Space Problems. & & & & \\
\hline R.M. Johnston. & 17 & 2 & 53 & 20 \\
\hline Squaring the Circle - A Close & & & & \\
\hline Approximation. & & & & \\
\hline P. Hessemer... & 18 & 3 & 54 & 30 \\
\hline Shortest Horizontal Distance & & & & \\
\hline Between Two Skew Lines. & & & & \\
\hline Brother Henry Curran & 20 & 1 & 56 & 16 \\
\hline Graphic Tantalizers. & 26 & 3 & 62 & 44 \\
\hline Light Shield (Problem). & & & & \\
\hline Robert J. Christenson. & 29 & 1 & 65 & 33 \\
\hline On the Solution of Problems. & & & & \\
\hline Irwin Wladaver....... & 19 & 3 & 55 & 13 \\
\hline Solution to Problem on Page 41 of May 1957 Issue of EDJ. & & & & \\
\hline Andre Halasz............ & 21 & 3 & 57 & 40 \\
\hline Solve This One. & & & & \\
\hline Elizabeth A. Kelso and & & & & \\
\hline Ernest R. Weidhaas. & 20 & 2 & 56 & 49 \\
\hline
\end{tabular}

PROBLEMS, PUZZLES, \& SOLUTIONS (continued)


PRODUCTION ILLUSTRATION.
See Pictorial Representation.

PROFESSIONAL DEVELOPMENT.
See Engineering Education.

PROJECTIVE GEOMETRY.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Conic Constructions From the} \\
\hline \multicolumn{5}{|l|}{Projective Viewpoint.} \\
\hline S.A. Coons. & 17 & 1 & 53 & 22 \\
\hline \multicolumn{5}{|l|}{Borecky, Pozniak, and} \\
\hline Lindgren. & 31 & 2 & 67 & 4 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Descriptive Geometry, Project-}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{metry: Letters to the} \\
\hline \multicolumn{5}{|l|}{JOURNAL from V.P. Borecky} \\
\hline and C.E.S. Lindgren. & 31 & 2 & 67 & 4 \\
\hline \multicolumn{5}{|l|}{Homology VS. Monge Method.} \\
\hline Abram Rotenberg. & 37 & 2 & 73 & 42 \\
\hline \multicolumn{5}{|l|}{Peculiar Lines and Planes.} \\
\hline V.P. Borecky. & 30 & 1 & 66 & 20 \\
\hline
\end{tabular}

QUALITY CONTROL.
Quality Control Specifications and Their Effect on Drawings. Marvin Fuller................ \(23 \quad 3 \quad 5938\)

RESEARCH.
See Advanced Drawing; Design.

ROWE, CHARLES E.
Personality Sketch.
J.D. McFarland.

```

SUMMER SCHOOLS (continued)
An Evaluation of Paper Pre-
sentations at the 1956
Summer School.
R. Ford Pray................. 20 1 56 52
Program - Annual Meeting and
1956 Summer School, Iowa
State College, Ames, Iowa.. 20 2 56 48
Program for the Summer School-
Division of Engineering
Graphics, United States
Air Force Academy........... 26 2 62 34
Proceedings of the 1967 Summer School
on Creative Design.
(entire issue).............. }31
International Conference on
Descriptive Geometry.
F. M. Croft, Jr............ 42 3 78 8

```

STANDARDS.
See A.S.A.; Division, Committee; IndustryCollege Relations; S.A.E.
```

Status of the ASA Y-14 Drawing
and Drafting Practice Stan-
dards.
Ralph S. Paffenbarger...... 20 1 56 40
A Study of Graphical Standards
for Electrical Diagrams and
Components.
Charles J. Baer............. 20 1 56 57

```

STEREOSCOPIC DRAWING.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
A Coordinate Method. \\
D. P. Adams.
\end{tabular} & 4 & 3 & 40 & 4 \\
\hline Stereoscopic Drawing in Descriptive Geometry. & & & & \\
\hline R.T. Henning. . . . . . . . . . . & 1 & 3 & 37 & 14 \\
\hline Stereographs for Descriptive & & & & \\
\hline Geometry. & 8 & 3 & 44 & 18 \\
\hline
\end{tabular}

STREET, WILLIAM E.
Personality Sketch. C.L. Svensen.................. \(17 \quad 3 \quad 5323\)

STUDENTS.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline of Engineering Students. & 24 & 2 & 60 & 16 \\
\hline What About Student-Quality. & & & & \\
\hline & 20 & 1 & 56 & 9 \\
\hline
\end{tabular}

SURFACE FINISH.
See Dimensioning.

SVENSEN, CARL LARS
\(\begin{array}{lccccc}\text { Distinguished Service Award... } & 17 & 3 & 53 & 14 \\ \text { Response. C.L. Svensen....... } & 17 & 3 & 53 & 16\end{array}\)

TEACHING AND TEACHERS. See also Teaching Methods.
Animated Films to Aid Creative
Space Perception.
H. B. Howe..................... \(24 \quad 3 \quad 6019\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{A New Approach to Teaching} \\
\hline Maurice E. Hamilton. & 27 & 2 & 63 & 38 \\
\hline A Course for Teacher Training. H.P. Skamser. & 15 & 1 & 51 & 10 \\
\hline \multicolumn{5}{|l|}{Developing Creativity and} \\
\hline \begin{tabular}{l}
Creative Thinking in Engineering Graphics. \\
Jack H. Anderson.
\end{tabular} & 23 & Creative Thinking in Engi- & 59 & 31 \\
\hline \multicolumn{5}{|l|}{Education of Drawing Teachers,} \\
\hline \multicolumn{5}{|l|}{Good O1' Joe Doaks (The} \\
\hline \multicolumn{5}{|l|}{Teacher Fails).} \\
\hline H.P. Skamser & 14 & 2 & 50 & 7 \\
\hline \multicolumn{5}{|l|}{Effective Programs in Engineer-} \\
\hline \multicolumn{5}{|l|}{They Be Taught?} \\
\hline Randolph P. Hoelsche & 24 & 1 & 60 & 19 \\
\hline \multicolumn{5}{|l|}{Freehand Drawing-How to Teach It} \\
\hline Frank Burns... & 22 & 2 & 58 & 34 \\
\hline \multicolumn{5}{|l|}{Graphic Science and the High School Teacher.} \\
\hline Robert S. Lang & 25 & 1 & 61 & 10 \\
\hline \multicolumn{5}{|l|}{What Can the High School Draw-} \\
\hline \multicolumn{5}{|l|}{ing Teacher Do to Help the} \\
\hline Freshman Engineering Student & 27 & 2 & 63 & 24 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Instruction in Graphics by}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Closed-Circuit Television.} \\
\hline Oliver M. Stone and & & & & \\
\hline John R. Martin. & 23 & 3 & 59 & 22 \\
\hline \multicolumn{5}{|l|}{Better Methods of Instruction} \\
\hline \multicolumn{5}{|l|}{in Engineering and Tech-} \\
\hline nical Drawing. & & & & \\
\hline Irwin Wladaver. & 22 & 2 & 58 & 47 \\
\hline \multicolumn{5}{|l|}{Methods of Teaching Engineer-} \\
\hline \multicolumn{5}{|l|}{ing Drawing.} \\
\hline Earl D. Black. & 24 & 1 & 60 & 15 \\
\hline \multicolumn{5}{|l|}{Motivation Needed in Teaching} \\
\hline \multicolumn{5}{|l|}{Engineering Graphics.} \\
\hline Earl D. Black & 21 & 1 & 57 & 17 \\
\hline \multicolumn{5}{|l|}{The New Student.} \\
\hline Frank M. Warner & 29 & 2 & 65 & 17 \\
\hline \multicolumn{5}{|l|}{Projections to the Project} \\
\hline \multicolumn{5}{|l|}{Method of Teaching Engi-} \\
\hline neering Drawing. & 20 & 1 & 56 & 38 \\
\hline \multicolumn{5}{|l|}{To the New Instructor.} \\
\hline Henry C. Spencer. & 28 & 3 & 64 & 4 \\
\hline \multicolumn{5}{|l|}{On-the-Job Training in Drafting and Design.} \\
\hline Tracy B. Nabers & 23 & 1 & 59 & 11 \\
\hline \multicolumn{5}{|l|}{Objective Evaluation of Drawings.} \\
\hline George K. Stegman. & 22 & 1 & 58 & 22 \\
\hline \multicolumn{5}{|l|}{Pre-Service Training.} \\
\hline Justus Rising.... & 7 & 3 & 43 & 10 \\
\hline \multicolumn{5}{|l|}{Professional Obligations of a} \\
\hline \multicolumn{5}{|l|}{Drawing Teacher.} \\
\hline H.C. Spencer & 13 & 1 & 49 & 5 \\
\hline \multicolumn{5}{|l|}{Problems Confronting the Teacher} \\
\hline of Engineering Drawing. & & & & \\
\hline Eugene G. Pare'.. & 22 & 1 & 58 & 20 \\
\hline \multicolumn{5}{|l|}{So You Have Decided to Be A} \\
\hline \multicolumn{5}{|l|}{Drawing Teacher.} \\
\hline H.C. Spencer... & 11 & 3 & 47 & 5 \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Teaching Clinic in Engineering}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Geometry.} \\
\hline H.C. Spencer & 13 & 1 & 49 & 11 \\
\hline Discussion: Jasper & 13 & 1 & 49 & 29 \\
\hline F.G. Higbee. & 13 & 1 & 49 & 11 \\
\hline R.P. Hoelscher & 13 & 1 & 49 & 13 \\
\hline R.S. Paffenbarger & 13 & 1 & 49 & 12 \\
\hline J.T. Rule & 13 & 1 & 49 & 27 \\
\hline F.M. Warner & 13 & 1 & 49 & 31 \\
\hline
\end{tabular} Graphics.
Maurice E. Hamilton........ \(27 \quad 2 \quad \begin{array}{llll}63 & 38\end{array}\)
A Course for Teacher Training.
H.P. Skamser................. 15 1 5110

Creative Thinking in Engi-
neering Graphics.
Jack H. Anderson............ 23 - 5931
Education of Drawing Teachers,
R.P. Hoelscher............... 2 43 2
Good O1' Joe Doaks (The Teacher Fails).
H.P. Skamser................. 1420507

Effective Programs in Engineering Graphics - How Shall They Be Taught?
\(60 \quad 19\)
Frank Burns................... 22225834
raphic Science and the High School Teacher.
Robert S. Lang............... 25 1 6110
ing Teacher Do to Help the Freshman Engineering Student.
H.P. Dale Walraven.......... 272424
 Oliver M. Stone and
John R. Martin.............. \(23 \quad 3 \quad 5922\)
再 in Engineering and Technical Drawing.
Irwin Wladaver............... 22 2 5847
thods of Teaching Engineerg Drawing.

5
Motivation Needed in Teaching Engineering Graphics.
Earl D. Black................ 2117
Frank M. Warner............. 2926517
Projections to the Project Method of Teaching Engineering Drawing.
t
Henry C. Spencer............. \(28 \quad 3 \quad 6414\)
On-the-Job Training in Drafting and Design.
\(59: 11\)
George K. Stegman........... \(22 \quad 1 \quad 58 \quad 22\)
Justus Rising................ 7 3 4310
Professional Obligations of a Drawing Teacher.
H.C. Spencer.................. 131459
e Teache Eugene G. Pare'.............. \(22 \quad 1 \quad 5820\)
So You Have Decided to Be A Drawing Teacher.
H.C. Spencer.................. 11 37 3

Teacher Training and Methods.
aching Clinic in Engineering Drawing and Descriptive Geometry.

TEACHING AND TEACHERS (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Teaching Case Study No. 1 Teaching to Develop Imagination and Inventiveness. & & & & \\
\hline Kenneth E. Lofgren. & 25 & 3 & 61 & 27 \\
\hline Teaching Case Study No. 2 & & & & \\
\hline Teaching to Develop Imagination and Inventiveness. & & & & \\
\hline Kenneth E. Lofgren & 26 & 1 & 62 & 18 \\
\hline Teaching Case Study No. 3 - & & & & \\
\hline Encouraging Creative Act- & & & & \\
\hline ivity Through Engineering & & & & \\
\hline Graphics. & & & & \\
\hline James R. Burnett. & 26 & 1 & 62 & 17 \\
\hline Teaching Descriptive Geometry & & & & \\
\hline With Colored Transparencies. & & & & \\
\hline Clayton W. Chance. & 26 & 2 & 62 & 13 \\
\hline Technical Drawing Curriculum & & & & \\
\hline at Illinois Institute of & & & & \\
\hline Technology. & & & & \\
\hline H.C. Spencer & 15 & 2 & 51 & 10 \\
\hline Teaching Engineering Graphics & & & & \\
\hline with. Colored Transparencies- & & & & \\
\hline An Evaluation. & & & & \\
\hline Clayton W. Chance. & 26 & 2 & 62 & 10 \\
\hline Teaching Introductory Nomography in Basic Graphics & & & & \\
\hline Courses. & & & & \\
\hline Alexander S. Levens & 20 & 2 & 56 & 35 \\
\hline Teaching Machines - An Applica- & & & & \\
\hline tion to Engineering Drawing. & & & & \\
\hline M.N. Besel and E.W.Knoblock & 26 & 2 & 62 & 30 \\
\hline Teaching Via Team Projects. & & & & \\
\hline Robert J. Foster. & 19 & 1 & 55 & 7 \\
\hline The Training and Early Experi- & & & & \\
\hline ences of the Drawing & & & & \\
\hline Teacher. & & & & \\
\hline J.S. Blackman & 15 & 3 & 51 & 13 \\
\hline Twenty Years After. & & & & \\
\hline Justus Rising. & 20 & 1 & 56 & 24 \\
\hline
\end{tabular}

The Anderson-Henniger Syndrome.
D. Anderson and J.K.

Henninger.................... 3926
A Contribution to Reform of
Mathematics and Art Teaching.
Reinhard Lehnart............ 391757
Course Structuring for SelfPaced Instruction.
J.B. Evett................... \(37 \quad 3 \quad 7312\)

Design Projects: Large VS Small; Individual VS Team.
M.L. Weed.....................

Directing Instructions to Meet Job Requirements - An Example Using Technical Illustration. J.M. Duff................... 421078

Engineering Student Retention Study.
R.J. Foster................. \(37 \quad 3 \quad 7310\)

Evaluation of Team Projects: Classroom Preparation for Career Situation. J.H. Earle................... \(39 \quad 3 \quad 7512\)

Mathematics and Graphics Getting the Point Across. L.C. Baird and F.F. Marvin. 36307217

Mathematics and Graphics -
Getting the Point Across-
Again?
L.C. Baird and F.F. Marvin. \(\begin{array}{lllll}37 & 2 & 73 & 2\end{array}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Dr. Clair V. Mann: A Biographical Sketch on the} \\
\hline \multicolumn{5}{|l|}{Occasion of a Special Citation by U.S. Congress} \\
\hline \multicolumn{5}{|l|}{in 1970. A Pioneer of the} \\
\hline Sketch by L.C. Christianson & 34 & 3 & 70 & 30 \\
\hline \multicolumn{5}{|l|}{Math Motivates Students to} \\
\hline \multicolumn{5}{|l|}{Learn Graphics.} \\
\hline W.A. Wockenfuss & 37 & 1 & 73 & 30 \\
\hline \multicolumn{5}{|l|}{Motivation Through Computer} \\
\hline \multicolumn{5}{|l|}{Graphics} \\
\hline F.A. Mosillo and B.E. Wolf. & 40 & 1 & 76 & 37 \\
\hline \multicolumn{5}{|l|}{New Teaching Techniques: The} \\
\hline \multicolumn{5}{|l|}{Basic Ingredient.} \\
\hline W.J. Jaffe. & 36 & 3 & 72 & 28 \\
\hline \multicolumn{5}{|l|}{A Renaissance in the Teaching of Graphical Methods.} \\
\hline R.C. Umholtz. & 34 & 2 & 70 & 31 \\
\hline \multicolumn{5}{|l|}{Stumbling Blocks for the} \\
\hline \multicolumn{5}{|l|}{Beginning Teacher.} \\
\hline E.D. Black... & 32 & 1 & 68 & 10 \\
\hline \multicolumn{5}{|l|}{They Who Start In Engineering.} \\
\hline R.J. Foster.. & 38 & 2 & 74 & 33 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{The Thought-Model Method of Teaching Spatial Visualization}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{A.S. Levens.................. 303613} \\
\hline \multicolumn{5}{|l|}{Visual Communication in Engineer-} \\
\hline \multicolumn{5}{|l|}{ing Graphics Education.} \\
\hline R.F. Vogel & 35 & 2 & 71 & 14 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
TEACHING AIDS. \\
See Also Teacher Training; Teaching Methods; Visualization.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Basic Models in Descriptive Geometry.}} \\
\hline & & & & \\
\hline C.E. Rowe. & 9 & 1 & 45 & 7 \\
\hline \multicolumn{5}{|l|}{Color As A Teaching Aid.} \\
\hline T.W. Waymack & 16 & 1 & 52 & 9 \\
\hline \multicolumn{5}{|l|}{Lucite Models.} \\
\hline \multicolumn{5}{|l|}{J.C. Seeger and H.D.} \\
\hline Richardson. & 13 & 1 & 49 & 16 \\
\hline \multicolumn{5}{|l|}{Mirrors in Orthographic} \\
\hline \multicolumn{5}{|l|}{Projection.} \\
\hline H.E. Grant. & 2 & 1 & 38 & 22 \\
\hline \multicolumn{5}{|l|}{Orthographic Projection and} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{J.G. McGuire and B.M.} \\
\hline Gallaway. . & 9 & 2 & 45 & 29 \\
\hline \multicolumn{5}{|l|}{Orthographic Projection Device.} \\
\hline H.E. Grant........ & 3 & 3 & 39 & 4 \\
\hline \multicolumn{5}{|l|}{Practical Paraphernalia.} \\
\hline R.S. Kirby. & 6 & 2 & 42 & 7 \\
\hline \multicolumn{5}{|l|}{Stereographs for Descriptive} \\
\hline \multicolumn{5}{|l|}{Geometry.} \\
\hline J.T. Rule & 8 & 3 & 44 & 18 \\
\hline \multicolumn{5}{|l|}{Slide Making and Its Use. \({ }^{\text {a }}\)} \\
\hline T. Hingsberg. & 15 & 2 & 51 & 25 \\
\hline \multicolumn{5}{|l|}{Trigonometric Truss.} \\
\hline \multicolumn{5}{|l|}{Werner F. Vogel and Klaus} \\
\hline E. Kroner. & 26 & 1 & 62 & 51 \\
\hline \multicolumn{5}{|l|}{Visual Aids. 1} \\
\hline Justus Rising & 11 & 1 & 4.7 & 8 \\
\hline \multicolumn{5}{|l|}{Visual Education.} \\
\hline \multicolumn{5}{|l|}{Justus Rising.............. 3 2 39} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{The Overlay in Engineering}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Graphics.} \\
\hline G.E. Hutchinson. & 41 & 3 & 77 & 58 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Slide Rule Course on TV:}} \\
\hline & & & & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Gains Clarity and Flexibility \\
T.C. Sarchet................ . 37
\end{tabular}} & 2 & 73 & 33 \\
\hline
\end{tabular}
    phical Sketch on the
    Occasion of a Special Ci-
    tation by U.S. Congress
    in 1970. A Pioneer of the
    \(\begin{array}{llllll}\text { Sketch by L.C. Christianson } & 34 & 3 & 70 & 30\end{array}\)
Math Motivates Students to
    Learn Graphics.
    W.A. Wockenfuss.............. 37 1 \(73 \quad 30\)
    otivation Through Computer
        F.A. Mosillo and B.E. Wolf. 4017637
    New Teaching Techniques: The
        Basic Ingredient
        W.J. Jaffe.................... 36328
        of Graphical Methods.
        mbling Blocks for the
        Beginning Teacher.
        .D. Black. .
        R.J. Foster.................. 3827433
        Teaching Spatial Visualization.
        A.S. Levens.................. 30-3-66 13
    anication in Engineer
    ing Graphics Education.
    R.F. Vogel................... 352714
    TEACHING AIDS.
    See Also Teacher Training; Teaching Methods;
    Visualization.
    ic Models in Descriptive
    Geometry.
    C.E. Rowe.......................
    T.W. Waymack. ................. 1616529
    J.C. Seeger and H.D.
    Richardson.................... 13 1 4916
    rrors in Orthographic
    H.E. Grant................... 2132
    aphic Projection and
    the Glass Box.
    Gallaway..................... 92429
Orthographic Projection Device.
H.E. Grant........................ 303394
R.S.Kirby..................... 62427
Stereographs for Descriptive
    Geometry.
    de Making and Its Use.
T. Hingsberg.................... \(15 \quad 2 \quad 5125\)
Trigonometric Truss.
    Werner F. Vogel and K1aus
    . 26 1 62 5
        Justus Rising............... 11 1 47 8
        Justus Rising. .................. \(3 \quad 2 \quad 395\)
    The Overlay in Engineering
    Graphics.
    Gains Clarity and Flexibility
    T.C. Sarchet................ 372733

\section*{TEACHING AIDS (continued)}
\begin{tabular}{|c|c|c|c|c|}
\hline eaching With Slides in Graphics Edward Holland, Jr.......... & 40 & 1 & 76 & 27 \\
\hline \multicolumn{5}{|l|}{A Transparency for Less Than} \\
\hline Two Cents? It's POSSIBLE! & & & & \\
\hline C.J. Sayre & 42 & 2 & 78 & 22 \\
\hline \multicolumn{5}{|l|}{Utilization of Teaching Media.} \\
\hline \multicolumn{5}{|l|}{A Visual Aid for Instruction} \\
\hline \multicolumn{5}{|l|}{in Orthographic Projection.} \\
\hline T.A. Jur and Mohammad Sarraf & 42 & 1 & 78 & \\
\hline at's a Goss-Box? & & & & \\
\hline L.D. Gos & 38 & 1 & 74 & 43 \\
\hline
\end{tabular}

TEACHING METHODS.
See also Teacher Training; Teaching Aids;
Testing and Grading; Visualization.
\begin{tabular}{|c|c|c|c|c|}
\hline Administration and Teaching. H.C.T. Eggers. & 4 & 2 & 40 & 4 \\
\hline Advantages of Supervised Draw- & & & & \\
\hline ing Periods. & & & & \\
\hline O.W. Potter & 4 & 2 & 40 & 11 \\
\hline Check and Double Check. & & & & \\
\hline H.C.T. Eggers. & 6 & 1 & 42 & 4 \\
\hline Creating Interest in Drawing. H.C. Maechler. & 5 & 2 & 41 & 19 \\
\hline Effective Means of Teaching & & & & \\
\hline Descriptive Geometry. & & & & \\
\hline W.G. Smith. & & & 37 & 18 \\
\hline Iowa Study Sheet. & & & & \\
\hline J.M. Russ. & 12 & 1 & 48 & 22 \\
\hline Methods and Teaching of & & & & \\
\hline Descriptive Geometry. & & & & \\
\hline C.E. Rowe & 2 & 1 & 38 & 1 \\
\hline Methods of Teaching Dimensioning. & & & & \\
\hline P.E. Machovina. & 12 & 1 & 48 & 6 \\
\hline Motivation as a Teaching Tool. E.R. Weidhaas & 17 & 1 & 53 & 31 \\
\hline Progress in the Teaching of & & & & \\
\hline Descriptive Geometry. & & & & \\
\hline C.E. Rowe. & 4 & 1 & 40 & 13 \\
\hline Remember the Forgotten Man & & & & \\
\hline J.M. Russ...... . . . . . . & 6 & 2 & 42 & 16 \\
\hline Research for Improving Teaching H.B. Howe & 16 & 2 & 52 & 22 \\
\hline Stimulating Student Inte F.G. Higbee. & 13 & 1 & 49 & 11 \\
\hline Teaching Drafting. & & & & \\
\hline W. Buchanan. & 7 & 1 & 43 & 2 \\
\hline Teaching Fundamentals. & & & & \\
\hline R.R. Worsencroft. & 4 & 1 & 40 & 21 \\
\hline Three-Dimensional Project at & & & & \\
\hline the Cooper Union. C. H. Young & 16 & 2 & 52 & 13 \\
\hline The Transfer of Ideas to Aid & & & & \\
\hline in Creative Thinking. & & & & \\
\hline M. McNeary... & 17 & 3 & 53 & 34 \\
\hline
\end{tabular}

Improving Classroom Efficiency. J.T. Coppinger.............. 42207820

TECHNOLOGY



Projection.
L. Eckhart, Originally

Published in VDI Zeitschrift,
Convolute: The Basic Developable Surface.
emistry and Geometry.
Leonard Kaplan............... \(25 \quad 3 \quad 6119\)
Technological Education and Graphics in Czechoslovakia.
Frank M. Hrachovsky........ \(25 \quad 1 \quad 6113\)
A Short Terminal Course in Technology.
Lyle E. Young.....
Marting Ellipses. Orbeck.
\(\begin{array}{llll}20 & 1 & 56 & 14\end{array}\)
Martin J. Orbeck
D. Mazkewitsch.............. 221528

The Use of Ellipse Templates in Technical Illustration.
H.W. Blakeslee............... Technical Analysis and Definition.
and R.J. Wilcox............. 26116212
Graphical Field Mapping.
John F. Calvert.............. 21 2 2735
Manual Skills in the Professional Curriculum.
Wayne L. Shick............... \(24 \quad 3 \quad 609\)
Mathematical Method for the \(\begin{array}{llllll}\text { Construction of an Ellipse. } \\ \text { Ralph T. Northrup........... } & 29 & 2 & 65 & 42\end{array}\)
Multi-View Drawing by the Direct Method.
David I. Cook..........
Gera1d W. Walsh, Jr. and
Paul E. Keicher.............. \(22-2\) 58
A New Perspective Method.
Wayne L. Shick................ \(22 \quad 1 \quad 58\)
43
A New Pictorial Piping Method.
George K. Stegman and
Robert P. Kemp................ 22 2 58 - 45
Aid Booklet
Hiram E. Grant............... \(20 \quad 1 \quad 5633\)
Clyde H. Kearns............. 221029
\(\begin{aligned} & \text { Technical Institute - Drawing } \\ & \text { Courses. } \\ & \text { M. Graney............................... } \\ & 16\end{aligned} 1 \begin{array}{llllll}5 & 17 & 17\end{array}\)
Trisection Flaw. John T. Rule.................. 292654

TESTING AND GRADING
Administration and Teaching.
H.C.T. Eggers................ 42404

Analysis of Graphic Talent.
C.V. Mann................... 8 - 18 and Training Tests V.D ecking and Grading 11 The Construction and Follow-Up of a Final Examination for Engineering Graphics.
Examination Exchange -
Why Not?
\(\begin{array}{llll}2 & 2 & 38 & 15\end{array}\)
```

TESTING AND GRADING (continued)

```
Examination Problems.
    J.M. Russ.................... May 37 . M
Grading Drawings.
    F.A. Heacock................ 4104010
Grading Drawings - A Commentary.
    J. Gerardi..................... 13 131929
Grading Lettering.
    R.R. Worsencroft............ 52416
Improving Examinations by
    Statistical Analysis.
    Robert P. Borri.............. \(27 \quad 1 \quad 6312\)
Objective Evaluation of Drawings.
    George K. Stegman........... 22 1 5822
Objectively Scored Test
    Problems.
    M.R. Graney.................. \(9 \quad 2 \quad 4519\)
Preparing Quizzes and Exams
    R.S. Paffenbarger........... 131212
A Scale for Grading Drawings
    E.G. Kirkpatrick............ \(13 \quad 3 \quad 4917\)
Training Tests in Drawing.
    W.E. Street.................. 3249
Unit Tests in Engineering
    Drawing.
    R.S. Paffenbarger........... \(13 \quad 1 \quad 4933\)
Validity of Examinations.
    Irwin Wladaver............... 173517
A Word About Unit Tests in
    Engineering Drawing.
    W.A. Rhule..................... \(17 \quad 2 \quad 5329\)
Testing Student Understanding
    of 3-D Space.
    J.A. Hardell. . . . . . . . . . . . . . . 42 1810
TOLERANCE AND LIMITS
See Dimensioning
Implied Shop Run Geometrical
Tolerances.
\(\quad\) S.B. Elrod.......................... 23

VISUALIZATION.
The Effect of Training on the Spatial Visualizing Ability of Engineering Students. R.R. Worsencroft........... 1911557

Experiment in Visualization. M.F. Blade.................. 13 3920

The Thought-Model Method of Teaching Spatial Visualization. A.S. Levens.................. \(30 \quad 3 \quad 66 \quad 13\)

Visualization Tests For Beginners. F.A. Heacock................ 223818

Improving Visualization: Fact or Fiction? Paul S. DeJong............... 41117747
Punish Them For They See Not. C.M. Hulley.................. 4137760

NOTES

30 / ENGINEERING DESIGN GRAPHICS JOURNAL INDEX

\section*{AUTHOR INDEX}

With few exceptions, titles in the Author Index are listed as they appear in the Journal.

\section*{A}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline AAKHUS, T.T. & & & & & ARNOLD, J. Norman & & & & \\
\hline See also Editorials & & & & & Measurement & 1 & 3 & 37 & \\
\hline Know Your Committees & 19 & 2 & 55 & 23 & Movable Scale Nomographs & 21 & 3 & 57 & 23 \\
\hline Engineering Drawing and its & & & & & Elementary Nomography. & 27 & 3 & 63 & 20 \\
\hline Relation to Design......... & \(? 2\) & 2 & 57 & 47 & ARNOLD, J.N. and Frances M. & & & & \\
\hline ADAMS, Douglas P. & & & & & TALLMADGE & & & & \\
\hline An Advanced Course in the & & & & & Specialized College Training & & & & \\
\hline Graphics Department. & 6 & 2 & 42 & 2 & for RCA Drafting Detail- & & & & \\
\hline A Coordinate Method for & & & & & & 9 & 1 & 45 & 13 \\
\hline Stereoscopic Drawing.. & 4 & 3 & 40 & 4 & ARONSOI, R.B. & & & & \\
\hline Personality Sketch - Prof- & & & & & Student Designers Look At & & & & \\
\hline essor John T. Rule. & 19 & 3 & 55 & 21 & Recycling. & 37 & 1 & 73 & 27 \\
\hline Graphics - The Cursive & & & & & ARTHUR, M.E. & & & & \\
\hline Writing of Science & 10 & 3 & 55 & 8 & Graphics in Music. & 26 & 2 & 62 & 52 \\
\hline Three Dimensional Nomo- & & & & & Graphic Solution of Simul- & & & & \\
\hline grams. & 2.0 & 1 & 56 & 16 & taneous Linear Equations & & & & \\
\hline Nomographic-Electronic & & & & & with More Than Two Varia- & & & & \\
\hline Computation. & 28 & 2 & 64 & 16 & bles................ & 27 & 1 & 63 & 38 \\
\hline Be Susceptible to the & & & & & Nomogram for Four-Centered & & & & \\
\hline Graphical Approach. & 29 & 2 & 65 & 45 & Ellinse Approximation. & 2.5 & 3 & 61 & 26 \\
\hline ALDRICH, B.M. & & & & & ARVESEN, Ole Peder & & & & \\
\hline Approach to Descriptive & 9 & 1 & 45 & 17 & The Axonometric Represent- & & & & \\
\hline ALDRICH, M.E. & & & & & Figures. & 27 & 3 & 63 & 41 \\
\hline Importance of Drafting to & & & & & On the Ouestion of the Luc- & & & & \\
\hline Design Engineers in the & & & & & idity of Picture from a & & & & \\
\hline Aircraft Industry. & 17 & 3 & 53 & 37 & Four-Dimensional Space. & 24 & 3 & 60 & 22 \\
\hline ALLEN, Stuart C. & & & & & ARVAS, Yaakov (Jack) & & & & \\
\hline That Do You Believe? & 20 & 2 & 56 & 49 & Isometric Views of Circles & & & & \\
\hline ALMFELDT, M.W. & & & & & On A Sphere... & 38 & 2 & 74 & 11 \\
\hline A Crossword Puzzle. & 42 & 2 & 78 & 40 & Visibility of Points On The & & & & \\
\hline The Solution & 42 & 3 & 78 & 41 & Isometric View of a Sphere. & 41 & 1 & 77 & 43 \\
\hline ALTZ, A.J. & & & & & ARWAS, Yaakov (Jack) and & & & & \\
\hline Dimensioning Practice. & 5 & 1 & 41 & 11 & BANAI, A. & & & & \\
\hline Drawing in the Defense & & & & & A Quick Approximation of & & & & \\
\hline Industries...... & 5 & 3 & 41 & 2 & the Development Angle of & & & & \\
\hline AMERICAN SOCIETY FOR ENGINEER- & & & & & an Oblique Cone. & 42 & 2 & 78 & 36 \\
\hline ING EDUCATION & & & & & ARWAS, Yaakov (Jack) and & & & & \\
\hline When Is An Activity A & & & & & KREIMER, Borah L. & & & & \\
\hline 'Project"'?.......... & & & & & Engineering Decision-Making & & & & \\
\hline How Is A Proposal Submitted. & 31 & 2 & 67 & 27 & With The Computer.......... & 42 & 3 & 78 & 55 \\
\hline ANDERSON, D. and J.K. HEN- & & & & & ASGHAR, M.H. & & & & \\
\hline NINGER & & & & & An Application of Computer & & & & \\
\hline The Anderson-Henninger & & & & & Graphics In The Packaging & & & & \\
\hline Syndrome. & 39 & 2. & 75 & 26 & Technology of Electronic & & & & \\
\hline ANDERSON, JACK H. & & & & & Devices. & 42 & 1 & 78 & 12 \\
\hline Developing Creativity and & & & & & ASHLEY, H.J. & & & & \\
\hline Creative Thinking in Engi.neering Graphics. & 23 & 3 & 59 & 31 & The Orthographic Ellipse... AULICH, W.M. & 39 & 3 & 75 & 16 \\
\hline APPLEBY, A.M. & & & & & How We Teach Engineering & & & & \\
\hline The Application of Descrip- & & & & & Drawing. & 2 & 2 & 38 & 1 \\
\hline tive Geometry to a Problem & & & & & AZPELL, E.W. & & & & \\
\hline in Geology. & 10 & 1 & 46 & 21 & Catepillar Tractor Piston: & & & & \\
\hline ARM, D.L. & & & & & A Detail Problem.......... & 5 & 1 & 41 & 15 \\
\hline What Can Drawing Depart- & & & & & & & & & \\
\hline ments Contribute to Trainjng
for Design?............... & 4 & 3 & 40 & 6 & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{BAER, Charles J.} \\
\hline \multicolumn{5}{|l|}{Graphic Analysis of A} \\
\hline Non-Linear Differential & & & & \\
\hline Equation. & 27 & 1 & 63 & 24 \\
\hline \multicolumn{5}{|l|}{A Study of Graphical Stan-} \\
\hline grams and Components. & 20 & 1 & 56 & 57 \\
\hline \multicolumn{5}{|l|}{A Graphical Method For} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Working with Binary 26,}} \\
\hline Numbers. & & & & \\
\hline \multicolumn{5}{|l|}{The Place of the Digital} \\
\hline \multicolumn{5}{|l|}{Computer in Graphics Instruction and the Purpose of} \\
\hline Flow Diagrams & 27 & 3 & 63 & 13 \\
\hline \multicolumn{5}{|l|}{Graphical Probability} \\
\hline Analysis. & 37 & 1 & 73 & 35 \\
\hline \multicolumn{5}{|l|}{Creative Design Translated} \\
\hline Into Reality. & 39 & 3 & 75 & 6 \\
\hline \multicolumn{5}{|l|}{BAER, C.J. and BUTNER, Steven} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{The Graphical and Digital-}} \\
\hline & & & & \\
\hline ial Equation. & 31 & 1 & 67 & 21 \\
\hline \multicolumn{5}{|l|}{BAER, C.J. and SHAFFER, Robt.} \\
\hline \multicolumn{5}{|l|}{A Comparative Study of} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Metric and Unified-U.S. 331569}} \\
\hline Fasteners.. & & & & 56 \\
\hline \multicolumn{5}{|l|}{BAIRD, L.C. and MARVIN, F.F.} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Mathematics and Graphics - \(36 \quad 3 \quad 7217\)}} \\
\hline Getting the Point Across.. & & & & \\
\hline \multicolumn{5}{|l|}{Mathematics and Graphics -} \\
\hline \multicolumn{5}{|l|}{Getting the Point Across -} \\
\hline Again? & 37 & 2 & 73 & 2 \\
\hline \multicolumn{5}{|l|}{BALL, L.D.} \\
\hline \multicolumn{5}{|l|}{Two Devices to Aid Spinal} \\
\hline Analysis & 37 & 2 & 73 & 38 \\
\hline \multicolumn{5}{|l|}{BANAI, A. and ARWAS, Jack} \\
\hline \multicolumn{5}{|l|}{A Quick Approximation of} \\
\hline \multicolumn{5}{|l|}{the Development Angle of} \\
\hline An Oblique Cone. & 42 & 2 & 78 & 36 \\
\hline \multicolumn{5}{|l|}{BARNETT, R.M.} \\
\hline \multicolumn{5}{|l|}{Engineering Graphics at the} \\
\hline University of Arizona...... & 41 & 1 & 77 & 36 \\
\hline \multicolumn{5}{|l|}{BARR, R.E.} \\
\hline \multicolumn{5}{|l|}{Reading Metric Scales Using} \\
\hline Scientific Notation & 41 & 3 & 77 & 39 \\
\hline \multicolumn{5}{|l|}{BARYLSKI, John} \\
\hline Annual Design Display. & 32 & 3 & 68 & 18 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Creative Engineering Design}} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Display Committee; Study}} \\
\hline & & & & \\
\hline Report & 41 & 1 & 77 & 18 \\
\hline \multicolumn{5}{|l|}{BARYLSKI, J.C. and GORCZ.YCA} \\
\hline \multicolumn{5}{|l|}{F.E.} \\
\hline \multicolumn{5}{|l|}{Numerical Control Assign-} \\
\hline \multicolumn{5}{|l|}{BEAKLEY, G.C.} \\
\hline \multicolumn{5}{|l|}{The Implementation of a} \\
\hline \multicolumn{5}{|l|}{Creative Design Project in} \\
\hline \multicolumn{5}{|l|}{the Freshman Engineering} \\
\hline Curriculum. . & 31 & 4 & 67 & 26 \\
\hline \multicolumn{5}{|l|}{BEAKLEY, G.C. and BREGAR, J.F.} \\
\hline Creative Design Belongs in the Freshman Year.......... & 34 & 2 & 70 & 26 \\
\hline \multicolumn{5}{|l|}{BECHTOLD, C.W.} \\
\hline \multicolumn{5}{|l|}{Studies in Computer Graphics
at the University of Colo-} \\
\hline rado.......... . . . . . . . . & 33 & 3 & 69 & 56 \\
\hline \multicolumn{5}{|l|}{Systematic Design of an} \\
\hline \multicolumn{5}{|l|}{Effective Engineering Graph-} \\
\hline ics Program........... & 35 & 2 & 71 & 19 \\
\hline \multicolumn{5}{|l|}{BEIL, R.J. and SHERROD, P.W.} \\
\hline \multicolumn{5}{|l|}{One Year with the Graphics} \\
\hline \multicolumn{5}{|l|}{System - An Educational} \\
\hline Experience.. & 41 & 3 & 77 & 24 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{BELITSOS, P.G.} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Advanced Principles in}} \\
\hline & & & & \\
\hline Drawings.................... & 21 & 3 & 57 & 14 \\
\hline \multicolumn{5}{|l|}{BEMIS, A.C.} \\
\hline \multicolumn{5}{|l|}{The result of Complete Di-} \\
\hline \multicolumn{5}{|l|}{BENNETT, T.R. and RULE, J.T.} \\
\hline Perimeter of an Ellipse & 34 & 2 & 70 & 16 \\
\hline \multicolumn{5}{|l|}{BERAN, D.C.} \\
\hline Numerical Control Drafting. & 30 & 2 & 66 & 17 \\
\hline \multicolumn{5}{|l|}{BERARD, S.J.} \\
\hline Secondary School Mechanical & & & & \\
\hline  & & & & \\
\hline ineering College Teacher & 3 & 4 & 39 & 2 \\
\hline What's in a Name. & 2 & 1 & 38 & 16 \\
\hline \multicolumn{5}{|l|}{BERGEN, Jay H.} \\
\hline Simplified Drafting & 20 & 2 & 56 & 31 \\
\hline \multicolumn{5}{|l|}{BERGEN, M.J.} \\
\hline \multicolumn{5}{|l|}{Effective Training in} \\
\hline Graphics & 15 & 3 & 51 & 16 \\
\hline \multicolumn{5}{|l|}{BERGTHAL, Baruch} \\
\hline \multicolumn{5}{|l|}{Indexed Projection (Trans-} \\
\hline lated by I. Wladaver) & 27 & 3 & 63 & 6 \\
\hline \multicolumn{5}{|l|}{BESEL, M.N.} \\
\hline \multicolumn{5}{|l|}{Teaching Machines - An Ap-} \\
\hline \multicolumn{5}{|l|}{plication to Engineering} \\
\hline Draving..... & 26 & 2 & 62 & 30 \\
\hline \multicolumn{5}{|l|}{BETTERLEY, M.L.} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{A Proposed Alphabet for}} \\
\hline & & & & \\
\hline & 26 & 3 & 62 & 43 \\
\hline \multicolumn{5}{|l|}{The Objectives and Content} \\
\hline \multicolumn{5}{|l|}{of Engineering Graphics} \\
\hline \multicolumn{5}{|l|}{BIGELOW, Arthur L} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Graphics Anplied to the
Craft of Bells and Caril-}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{lons....................... 201050} \\
\hline Graphics in the Belfry & 12 & 3 & 48 & 8 \\
\hline \multicolumn{5}{|l|}{BLACK, C.H.} \\
\hline Art Applied to Engineering. & 3 & 1 & 38 & 14 \\
\hline \multicolumn{5}{|l|}{BLACK, Earl D.} \\
\hline \multicolumn{5}{|l|}{See also Editorials} \\
\hline \multicolumn{5}{|l|}{Requirements of a Toleran-} \\
\hline \multicolumn{5}{|l|}{Motivation Needed In Teach-} \\
\hline ing Engineering Drawing & 21 & 1 & 57 & 17 \\
\hline \multicolumn{5}{|l|}{Methods of Teaching Engin-} \\
\hline eering Drawing..... & 24 & 1 & 60 & 15 \\
\hline \multicolumn{5}{|l|}{Decimalized Measure Versus} \\
\hline the Metric System..... & 2.6 & 3 & 62 & 30 \\
\hline \multicolumn{5}{|l|}{Engineering Graphics for the} \\
\hline "Philosopher" or the & & & & \\
\hline 'P1umber'".......... & 26 & 3 & 62 & 16 \\
\hline \multicolumn{5}{|l|}{Engineering Graphics -} \\
\hline Genesis to Engineering Dev- & & & & \\
\hline elopment. & 27 & 3 & 63 & 17 \\
\hline The New Breed & 28 & 3 & 64 & 3 \\
\hline Fog, Vision, or Insight & 29 & 3 & 65 & 3 \\
\hline \multicolumn{5}{|l|}{Graphics and the Under-} \\
\hline graduate. . . . . . . . . . & 29 & 1 & 65 & 26 \\
\hline Graphics, 1937 to & 29 & 2 & 65 & 3 \\
\hline \multicolumn{5}{|l|}{By the Grape Vine: About the Goals of Engineering} \\
\hline Education............... & 30 & 2 & 66 & 25 \\
\hline \multicolumn{5}{|l|}{Change, Progress, and Con-} \\
\hline troversy, An Editorial.... & 30 & 2 & 66 & 5 \\
\hline \multicolumn{5}{|l|}{Luisa Bonfiglioli, Person-} \\
\hline Index to Vol. 30 & 30 & 3 & 66 & 66 \\
\hline Know-how Versus Guess-how. & 31 & 2 & 67 & 25 \\
\hline \multicolumn{5}{|l|}{Results of the Follow-up} \\
\hline \multicolumn{5}{|l|}{Survey of the 1967 Summer} \\
\hline School & 31 & 4 & 67 & 8 n \\
\hline
\end{tabular}

\section*{B}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Black Earl D. (continued)} \\
\hline Stumbling Blocks for the & & & & \\
\hline Beginning Teacher & 32 & 1 & 68 & 10 \\
\hline \multicolumn{5}{|l|}{Experiment in Open-Laboratory} \\
\hline \multicolumn{5}{|l|}{Instruction in Engineering 32336835} \\
\hline Graphics. & 32 & 3 & 68 & 35 \\
\hline \multicolumn{5}{|l|}{Where Does the Expressway} \\
\hline For Higher Education Lead
Us? . . ................... & 33 & 2 & 69 & 6 \\
\hline \multicolumn{5}{|l|}{Using the Team Approach in} \\
\hline Teaching Graphics and Design. & & 1 & 69 & 28 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{BLACK, Earl D. and VLADAVER, Irwin}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Index for 1955-65 Journal,} \\
\hline Sup. to 30 & 30 & 1 & 66 & \\
\hline \multicolumn{5}{|l|}{BLACKMAN, J.S} \\
\hline \multicolumn{5}{|l|}{Creativity - Its Care and} \\
\hline \multicolumn{5}{|l|}{Cultivation Among Engineer-} \\
\hline ing Students. & 34 & 2 & 70 & 22 \\
\hline \multicolumn{5}{|l|}{The Training and Early Experience of the Engineer-} \\
\hline ing Drawing Teacher & 15 & 3 & 51 & 13 \\
\hline \multicolumn{5}{|l|}{BLADE, E.} \\
\hline \multicolumn{5}{|l|}{Cave Canem - Problem} \\
\hline Solution. & 18 & 2 & 54 & 32 \\
\hline \multicolumn{5}{|l|}{BLADE, Mary F} \\
\hline \multicolumn{5}{|l|}{See also Editorials} \\
\hline Experiment in Visualization. & 13 & 3 & 49 & 20 \\
\hline \multicolumn{5}{|l|}{Editorial Engineering} \\
\hline Graphics & 26 & 1 & 62 & 2 \\
\hline Experience - Not Exposur & 26 & 3 & 62 & 2 \\
\hline Transfer Studies & 27 & 2 & 63 & 11 \\
\hline Feedback Needed (Editorial) & 27 & 1 & 63 & 2 \\
\hline \multicolumn{5}{|l|}{Faspard Monge and His Effect} \\
\hline on Engineering Drawing..... & 28 & 3 & 64 & 2 \\
\hline \multicolumn{5}{|l|}{Design of the Geometry of} \\
\hline \multicolumn{5}{|l|}{Space Structures Using Graph} \\
\hline Theory and Matrix Transformations. & 36 & 3 & 72 & 2 \\
\hline \multicolumn{5}{|l|}{BLADE, M. and BLADE, E.} \\
\hline The Design Geometry of & & & & \\
\hline Inflatable Boats & 19 & 3 & 55 & 14 \\
\hline \multicolumn{5}{|l|}{BLAKESLEE, H.W.} \\
\hline \multicolumn{5}{|l|}{The Use of E11ipse Tem-} \\
\hline plates in Technical Illustration. & 21 & 2 & 57 & 31 \\
\hline \multicolumn{5}{|l|}{BLAKESLEE, H.W. and CARPENTER} \\
\hline \multicolumn{5}{|l|}{W.F.} \\
\hline \multicolumn{5}{|l|}{Three-prong U-bar and Carry-} \\
\hline ing Case. & 30 & 2 & 66 & 44 \\
\hline \multicolumn{5}{|l|}{BLANCO, E.E.} \\
\hline \multicolumn{5}{|l|}{The Evaluation of Student} \\
\hline Creative Design Projects. & 31 & 4 & 67 & 34 \\
\hline \multicolumn{5}{|l|}{BLANTON, G.I., Jr.} \\
\hline Walking on Water & 33 & 2 & 69 & 36 \\
\hline \multicolumn{5}{|l|}{BOCKHORST, R.W.} \\
\hline \multicolumn{5}{|l|}{The Summer School for Engineering Drawing Teachers,} \\
\hline June 1946...... . . . . . . . . & 10 & 3 & 46 & 5 \\
\hline \multicolumn{5}{|l|}{BOGUSLAVSKY, B.V.} \\
\hline Orthographic views & 40 & 2 & 76 & 20 \\
\hline \multicolumn{5}{|l|}{Claude Crozet - A Career In} \\
\hline Engineering Graphics & 40 & 2 & 76 & 20 \\
\hline \multicolumn{5}{|l|}{BOLESLAVSKI, Moshe} \\
\hline \multirow[t]{2}{*}{The Dilemma of Descriptive
Geometry.................} & & & & \\
\hline & 40 & 3 & 76 & 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{BONFIGLIOLI, Luisa:} \\
\hline A Personality Sketch. E.D. Black. & 30 & 1 & 66 & 7 \\
\hline \multicolumn{5}{|l|}{Axonometric Picture and Stereoscopic Model for Four-} \\
\hline Dimensional Euclidean Geometry. & 30 & 1 & 66 & 19 \\
\hline \multicolumn{5}{|l|}{Recipient of the Frank} \\
\hline \multicolumn{5}{|l|}{Oppenheimer Award. Present- \(30 \quad 366\)} \\
\hline \multicolumn{5}{|l|}{Fundamental Theorems of the} \\
\hline Geometry of Four Dimensions. & 30 & 3 & 66 & 15 \\
\hline \multicolumn{5}{|l|}{Science Education vs. Engineering Education - A Solut-} \\
\hline ion to This Dilemma?. & 31 & 1 & 67 & 17 \\
\hline Two Remarkable Constructions & 32 & 1 & 68 & 42 \\
\hline Computer Technique For Modern Descriptive Geometry. & 34 & 2 & 70 & 44 \\
\hline \multicolumn{5}{|l|}{BORECKY, V.P.} \\
\hline \multicolumn{5}{|l|}{Relationship Between Projective and Descriptive Geo-} \\
\hline metry. & 21 & 1 & 62 & 8 \\
\hline \multicolumn{5}{|l|}{Technique of Projective Geometry and the Application to} \\
\hline Engineering Problems & 26 & 3 & 62 & 8 \\
\hline Peculiar Lines and Planes & 30 & 1 & 66 & 20 \\
\hline \multicolumn{5}{|l|}{BORECKY, V.P. and LINDGREN} \\
\hline Borecky and Lindgren on & & & & \\
\hline Pozniak. & 31 & 2 & 67 & 4 \\
\hline \multicolumn{5}{|l|}{BORRI, Robert P.} \\
\hline \multicolumn{5}{|l|}{The Construction and Followup of a Final Examination} \\
\hline for Engineering Graphics... & 25 & 3 & 61 & 9 \\
\hline \multicolumn{5}{|l|}{Improving Examinations by} \\
\hline Statistical Analysis. & 27 & 1 & 63 & 12 \\
\hline \multicolumn{5}{|l|}{Previous Drawing Experience} \\
\hline \multicolumn{5}{|l|}{BOSMO, R.W.} \\
\hline \multicolumn{5}{|l|}{On An Application of Desar-} \\
\hline gues' Theorem (on a JEG & 30 & 3 & 66 & 24 \\
\hline \multicolumn{5}{|l|}{BOTKIN, Kenneth E} \\
\hline \multicolumn{5}{|l|}{Return to Excell} \\
\hline (Editorial) & 29 & 1 & 65 & 3 \\
\hline \multicolumn{5}{|l|}{BOTKIN, K.E. and McCUTCHEN,H.} \\
\hline Trisection remains a problem & 30 & 1 & 66 & 7 \\
\hline \multicolumn{5}{|l|}{BOUCHER, C.T.G.} \\
\hline Thomas Newcomen: Inventor & 36 & 2 & 72 & 8 \\
\hline \multicolumn{5}{|l|}{BOWES, W.H. and SMITH} \\
\hline Problem Solution & 12 & 1 & 48 & 18 \\
\hline \multicolumn{5}{|l|}{BRAGG, F.C.} \\
\hline Axonometric Scales. & 10 & 1 & 46 & 11 \\
\hline \multicolumn{5}{|l|}{Guide Lines for Dimension-} \\
\hline ing. & 11 & 2 & 47 & 24 \\
\hline \multicolumn{5}{|l|}{BRAINARD, A.J.} \\
\hline \multicolumn{5}{|l|}{Freshman Engineering Design} \\
\hline Projects & 41 & 1 & 77 & 38 \\
\hline \multicolumn{5}{|l|}{BRATTIN, C.L.} \\
\hline \multicolumn{5}{|l|}{This is Michigan State} \\
\hline College............ & 15 & 2 & 51 & 7 \\
\hline \multicolumn{5}{|l|}{BREGAR, J.F. and BEAKLEY,G.C.} \\
\hline \multicolumn{5}{|l|}{Creative Design Belongs in} \\
\hline \multicolumn{5}{|l|}{BRISSON, D.W.} \\
\hline \multicolumn{5}{|l|}{The Hyperstereogram - A De-} \\
\hline \multicolumn{5}{|l|}{vice for the Synthetic Perception of Four-Dimensional} \\
\hline Objects....... & 41 & 3 & 77 & 36 \\
\hline \multicolumn{5}{|l|}{BROADSTON, J.A.} \\
\hline Surface Roughness Designation Symbols.. & 9 & 3 & 45 & 29 \\
\hline \multicolumn{5}{|l|}{BROCK, E.H.} \\
\hline \multirow[t]{2}{*}{Engineering Drawing in the
Atomic Engineering Field..} & & & & \\
\hline & 18 & 1 & 54 & 33 \\
\hline
\end{tabular}

A Personality Sketch. E.D.
Axonometric Picture and Ster-
eoscopic Model for Four-
Dimensional Euclidean Geo-
Recipient of the Frank
Oppenheimer Award. Present-
ation by I.L. Hill.......... 30 3
Fundamental Theorems of the
Science Education vs. Engin-
eering Education - A Solut-
on to This Dilemma?
Computer Technique For Mod-
ern Descriptive Geometry... 34277044
BORECKY, V.P.
Relationship Between Projec
tive and Descriptive Geo-
Technique of Projective Geo-
metry and the Application to
Engineering Problems....... 263628
Peculiar Lines and Planes.. \(30 \quad 1 \quad 6620\)
PKY, V.P. and LINDGREN
Borecky and Lindgren on
BORRI, Robert P.
The Construction and Follow-
up of a Final Examination
for Engineering Graphics... \(25 \quad 3 \quad 61 \quad 9\)
oving Examinations by
Previous Drawing Experience
of Engineering Students.... \(24 \quad 2 \quad 6016\)
BOSMO, R.W.
An Application of Desar-
gues Theorem (on a JEG
BOTKIN, Kenneth E.
Return to Excellence
1-65 3
\(\begin{array}{lllllll}\text { Trisection remains a problem } & 30 & 1 & 66 & 7\end{array}\)
BOUCHER, C.T.G.
Thomas Newcomen: Inventor
of the Steam Engine........
36 \(2 \begin{array}{lllll}72 & 8\end{array}\)
BOWES, W.H. and SMITH
BRAGG, F.C.
Axonometric Scales..... 10 - 4611
Guide Lines for Dimension-
BRAINARD, A. J .
Freshman Engineering Design
Projects............................ \(41 \quad 1 \quad 7738\)
BRATTIN, C.L.
This is Michigan State
BREGAR, J.F. and BEAKLEY,G.C.
Creative Design Belongs in
the Freshman Year
\(34 \quad 2 \quad 70 \quad 26\)
BRISSON, D.W.

vice for the Synthetic Per-
ception of Four-Dimensional
ROADSTON, J.A.
Surface Roughness Design-
ROCK, E.H.
Engineering Drawing in the
Atomic Engineering Field... \(18 \quad 1 \quad 5433\)

\section*{B}
\begin{tabular}{|c|c|c|c|c|}
\hline BROWN, F & & & & \\
\hline Functional Scales on a Plotter Using Graphical & & & & \\
\hline Concents. & 34 & 1 & 70 & 24 \\
\hline BROWN, N.L. & & & & \\
\hline Use of Computer Graphics in & & & & \\
\hline Product Engineering. & 42 & 1 & 78 & 22 \\
\hline BROWN, T.C. & & & & \\
\hline Notes on the Summer Drawing & 10 & 3 & 46 & 30 \\
\hline A Survey of Supervised & & & & \\
\hline Class Hours Required in & & & & \\
\hline Graphics Courses. & 15 & 1 & 51 & 13 \\
\hline BUCHANAN, N.D. & & & & \\
\hline Computer Drawings by Engineering Graphics Students.. & 30 & 2 & 66 & 27 \\
\hline An Empathy-Building Graphics & & & & \\
\hline Problem. & 31 & 2 & 67 & 26 \\
\hline BUCHANAN, W . & & & & \\
\hline The Teaching of Drafting & 7 & 1 & 43 & 2 \\
\hline BUCK, Carson P. & & & & \\
\hline Integration - Trend or Fad. & 20 & 2 & 56 & 39 \\
\hline An Outline for an Integrated & & & & \\
\hline Course. & 22 & 1 & 58 & 46 \\
\hline Interim Report of the Future & & & & \\
\hline Development Committee & 29 & 2 & 65 & 46 \\
\hline BUHL, Col. C.M. & & & & \\
\hline New SAE Dimensioning Standards. & 20 & 1 & 56 & 19 \\
\hline BUCK, C.P. & & & & \\
\hline Personality Sketch of & & & & \\
\hline Prof. William W. Turner. & 19 & 1 & 55 & 20 \\
\hline BULKELEY, P.Z. & & & & \\
\hline Design Graphics - Visual & & & & \\
\hline Perception Between An & & & & \\
\hline Engineer and Himself & 32 & 2 & 68 & 18 \\
\hline BURNETT, James R. & & & & \\
\hline Teaching Case Study No.3- & & & & \\
\hline Encouraging Creativity & & & & \\
\hline Through Engineering & & & & \\
\hline Graphics. & 26 & 1 & 62 & 17 \\
\hline BURNS, Frank & & & & \\
\hline Freehand Drawing - How To & & & & \\
\hline Teach It. & 22 & 2 & 58 & 34 \\
\hline BUSH, G.F. & & & & \\
\hline Notes on Practical Perspective. & 8 & 2 & 44 & 11 \\
\hline BUTNER, Steven and BAER, C.J. & & & & \\
\hline The Graphical and Digital- & & & & \\
\hline ized Output of a Different- & & & & \\
\hline ial Equation. & 31 & 1 & 67 & 21 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\[
\mathrm{C}
\]} \\
\hline \multicolumn{4}{|l|}{CALCATERRA, Paul} \\
\hline An Application for the & & & \\
\hline Mobius Band................. 25 & 3 & 61 & 14 \\
\hline \multirow[t]{2}{*}{CALVERT, \({ }_{\text {Graphical Field Mapping.... } 210}\)} & & & \\
\hline & 2 & 57 & 35 \\
\hline \multicolumn{4}{|l|}{CAMPBELL, H.S} \\
\hline \multicolumn{4}{|l|}{Teaching Machine Drawing} \\
\hline \multicolumn{4}{|l|}{in a Secondary School to} \\
\hline \multicolumn{4}{|l|}{CARPENTER, R.C.} \\
\hline \multicolumn{4}{|l|}{Some Gleanings From Commer- 18 54} \\
\hline \multicolumn{4}{|l|}{CARPENTER, W.F. and BLAKESLEE,} \\
\hline Three-prong U-bar and Carrying Case. & 2 & 66 & 44 \\
\hline \multicolumn{4}{|l|}{CARR, E.F.} \\
\hline \multicolumn{4}{|l|}{Drawing Instrument and Fine 440} \\
\hline Drawing Papers Supply..... & 1 & 40 & 15 \\
\hline \multicolumn{4}{|l|}{CEFOLA, A. and HACHEMEISTER,} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
C.A. \\
Developable Transition Pieces
\end{tabular}}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Joining at Two Plane Open-} \\
\hline ings... & 2 & 42 & 10 \\
\hline CHAFFINS, C.J. & 3 & 53 & 8 \\
\hline \multicolumn{4}{|l|}{CHALK, W.S.} \\
\hline Design and the College Freshman. \(\qquad\) & 3 & 64 & 15 \\
\hline A Design Case History..... 31 & 4 & 67 & 8 \\
\hline The Design Solution........ 31 & 4 & 67 & 38 \\
\hline \multicolumn{4}{|l|}{Introductory Creative Design} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Display. \\
Blue Ribbon Outstanding
\end{tabular}}} \\
\hline & & & \\
\hline Projects.................. 32 & 3 & 68 & 23 \\
\hline \multicolumn{4}{|l|}{CHANCE, Clayton W.} \\
\hline \multicolumn{4}{|l|}{Teaching Descriptive Geometry with Colored Trans} \\
\hline parencies, Part II......... 26 & 2 & 62 & 13 \\
\hline \multicolumn{4}{|l|}{Teaching Engineering Graph-} \\
\hline \multicolumn{4}{|l|}{ics with Colored Transparencies - An Evaluation,} \\
\hline Part I...................... 26 & 2 & 62 & 10 \\
\hline \multicolumn{4}{|l|}{CHARIT, J.} \\
\hline Using Inversion to Solve a Construction Problem..... 40 & 3 & 76 & 37 \\
\hline \multicolumn{4}{|l|}{CHAYNE, Charles A.} \\
\hline \multicolumn{4}{|l|}{On the Importance of Draft-} \\
\hline \multicolumn{4}{|l|}{ing in Engineering Develop- 232559} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{CHRISTENSON, Robert J.}} \\
\hline & 1 & 65 & 33 \\
\hline \multicolumn{4}{|l|}{Cover Designs for All the} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Journal issues starting
with Vol. \(29, ~ N o .1 ~ t h r o u g h ~\)}} \\
\hline & & & \\
\hline Vol 31, No. 2; acknowledged. 31 & 2 & 67 & 1 \\
\hline \multicolumn{4}{|l|}{CHRISTIAN, Marshall J.} \\
\hline \multicolumn{4}{|l|}{\(\begin{array}{llllll}\text { The Christian Approach to } & 28 & 3 & 64 & 11\end{array}\)} \\
\hline \multicolumn{4}{|l|}{CHRISTIANSON, L.D.} \\
\hline \multicolumn{4}{|l|}{Biographical and Personality} \\
\hline \multicolumn{4}{|l|}{Sketch of Dr. Clair V. Mann} \\
\hline Congressional Citation.... 34 & 3 & 70 & 30 \\
\hline \multicolumn{4}{|l|}{CHRISTIANSON, L.C. and WOOLRYCH,} \\
\hline \multicolumn{4}{|l|}{E. H.} \\
\hline A Study of Desirable Requirements for Beginning Draftsmen19 & 2 & 55 & 42 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CHRISTMAN, W.M., Jr. Design Projects (edited by W.M.C.). & 31 & 4 & 67 & 42 \\
\hline \multicolumn{5}{|l|}{CLARK, A.K.} \\
\hline \multicolumn{5}{|l|}{Readability of Engineering} \\
\hline Drawings: the Implications of Typographical Research.. & 39 & 1 & 75 & 19 \\
\hline \multicolumn{5}{|l|}{CLEMOW, A.H.} \\
\hline Laboratory in Consumer Product Evaluation. & 37 & 3 & 73 & 6 \\
\hline \multicolumn{5}{|l|}{COBAUGH, H.B.} \\
\hline \multicolumn{5}{|l|}{The Place of Blueprint Read-} \\
\hline School. . . . . . . . . . . . . . . . . & 10 & 1 & 46 & 5 \\
\hline \multicolumn{5}{|l|}{COFFEY, John W., Jr.} \\
\hline \multicolumn{5}{|l|}{The Engineering Drawing} \\
\hline Course at U.S. Air Force & & & & \\
\hline Academy & 22 & 3 & 58 & 35 \\
\hline \multicolumn{5}{|l|}{COLE, L.C} \\
\hline The Engineering Department at Work. & 6 & 1 & 42 & 3 \\
\hline \multicolumn{5}{|l|}{COLEMAN, R.M.} \\
\hline \multicolumn{5}{|l|}{Dimensioning and Checking} \\
\hline Drawings. & 21 & 1 & 57 & 49 \\
\hline \multicolumn{5}{|l|}{Teaching the Design Process} \\
\hline in the Freshman Year & 33 & 1 & 69 & 21 \\
\hline \multicolumn{5}{|l|}{COOK, David I.} \\
\hline \multicolumn{5}{|l|}{Multi-View Drawing by the} \\
\hline Direct Method & 21 & 2 & 57 & 34 \\
\hline \multicolumn{5}{|l|}{COONS, Steven A.} \\
\hline \multicolumn{5}{|l|}{\multirow[b]{2}{*}{Engineering Drawing........ 14150}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Conic Constructions from} \\
\hline the Projective Viewpoint. & 17 & 1 & 53 & 22 \\
\hline \multicolumn{5}{|l|}{N -Dimensional Descriptive} \\
\hline Geometry. . & 18 & 2 & 54 & 21 \\
\hline \multicolumn{5}{|l|}{The Future Course of Engineering Graphics from the} \\
\hline Faculty Viewpoint & 26 & 2 & 62 & 22 \\
\hline \multicolumn{5}{|l|}{N-Dimensional Descriptive} \\
\hline \multicolumn{5}{|l|}{Geometry and Multi-variable} \\
\hline Functions. & 26 & 1 & 62 & 26 \\
\hline \multicolumn{5}{|l|}{Operational Symbolism for} \\
\hline Graphical Processes & 21 & 3 & 57 & 27 \\
\hline \multicolumn{5}{|l|}{COPPINGER, J.T.} \\
\hline Computer Graphics for EDG.. & 38 & 2 & 74 & 7 \\
\hline \multicolumn{5}{|l|}{Improving Classroom Effic-} \\
\hline iency.......... . . . . . . . . & 42 & 2 & 78 & 20 \\
\hline \multicolumn{5}{|l|}{COPPINGER, J.T. and DEMEL, J.T.} \\
\hline \multicolumn{5}{|l|}{Using Graphics to Teach} \\
\hline Computer Programming. . & 42 & 2 & 78 & 26 \\
\hline \multicolumn{5}{|l|}{COYNE, A.L.} \\
\hline The Mechanical Drawing Assoc & & & & \\
\hline \multicolumn{5}{|l|}{iation of New England...... 137} \\
\hline \multicolumn{5}{|l|}{COYNE, A.L. and RULE, J.T.} \\
\hline \multicolumn{5}{|l|}{M.I.T. Summer Course in} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Graphics for High School
Teachers....................}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{CURRAN, Brother Henry} \\
\hline \multicolumn{5}{|l|}{Note On Shortest Horizontal} \\
\hline \multicolumn{5}{|l|}{Distance Between Two Skew} \\
\hline Lines. & 20 & 1 & 56 & 16 \\
\hline \multicolumn{5}{|l|}{COZZENS, C.R.} \\
\hline \multicolumn{5}{|l|}{Research - Programmed Instruction in Descriptive Geo-} \\
\hline metry....................... . & 31 & 1 & 67 & 13 \\
\hline Ellipse Construction. & 38 & 1 & 74 & 15 \\
\hline Graphic Integration of the & 40 & 1 & 76 & 12 \\
\hline \multicolumn{5}{|l|}{COZZENS, C.R. and JOHNSON,} \\
\hline \multicolumn{5}{|l|}{Gary} \\
\hline \multicolumn{5}{|l|}{The Summer Drafting Institute
at Texas A\&M University,} \\
\hline 1965.. & 30 & 3 & 66 & 9 \\
\hline
\end{tabular}

\section*{C}
```

CROCHETIERE, W.J.
Engineering Design In Phy-
sical Medicine............ 34 3 70 49
CROFT, F.M.
The Use of SI Units in Des-
criptive Geometry.......... 42 2 78 16
International Conference on
Descriptive Geometry - A
Summary of Outstanding Suc-
cess in Vancouver.........

```

\section*{D}
\begin{tabular}{|c|c|c|c|c|}
\hline DANNEHOWER, G. & & & & \\
\hline Johansson and His Precision Gages & 3 & 4 & 39 & 11 \\
\hline DARLEY, W.G. & & & & \\
\hline Lighting and Seeing in the & & & & \\
\hline Drawing Room. & 6 & 3 & 42 & 13 \\
\hline DAVIS, D.S. & & & & \\
\hline Industrial Nomography. & 1.9 & 3 & 55 & 34 \\
\hline DAVISON, E.D. & & & & \\
\hline Communications - A Measure & & & & \\
\hline of Mechanical Technology & & & & \\
\hline Programs in Florida Junior Colleges. & 32 & 3 & 68 & 44 \\
\hline DeGUISE, Claude & & & & \\
\hline Mid-year Conference in & & & & \\
\hline Montreal - Highlights in & & & & \\
\hline French and English. & 41 & 2 & 77 & 14 \\
\hline DeJONG, Paul S. & & & & \\
\hline See also Editorials & & & & \\
\hline Design Instruction for Fresh- & & & & \\
\hline man Engineers........... & 36 & 1 & 72 & 4 \\
\hline Improving Visualization: & & & & \\
\hline Fact or Fiction? & 41 & 1 & 77 & 47 \\
\hline Puzzles. & 41 & 2 & 77 & 26 \\
\hline Solutions & 41 & 3 & 77 & 62 \\
\hline The JOURNAL Goes To Metric & & & & \\
\hline Size. & 42 & 2 & 78 & 3 \\
\hline 1978 Creative Engineering & & & & \\
\hline Design Display - A Summary. & 42 & 3 & 78 & 24 \\
\hline DeMATTOS, J.A. & & & & \\
\hline Solution of Descriptive Geo- & 10 & 3 & 46 & 28 \\
\hline DeMAUSE, L. & & & & \\
\hline Industrial Application of. & & & & \\
\hline Drafting Standards. & 16 & 1 & 52 & 15 \\
\hline DeMEDEIROS, M.F. & & & & \\
\hline Shade and Shadow Theory. & 38 & 1 & 74 & 31 \\
\hline DEMEL, J. T. and COPPINGER,J.T. & & & & \\
\hline Using Graphics to Teach & & & & \\
\hline Computer Programming... & 42 & 2 & 78 & 26 \\
\hline DENHAM, A.F. & & & & \\
\hline Decimal Dimensioning Adopted by Ford. & 4 & 1 & 40 & 4 \\
\hline DENISON, John & & & & \\
\hline Constructing axonometric & & & & \\
\hline Scales. & 38 & 3 & 74 & 15 \\
\hline DeVANEY, Amogene & & & & \\
\hline International Conference on & & & & \\
\hline Descriptive Geometry..... & 40 & 3 & 76 & 21 \\
\hline ASEE's 50th Anniversary - & & & & \\
\hline A Look Ahead... & 41 & 3 & 77 & 11 \\
\hline The Relevance of Descriptive & & & & \\
\hline Geometry. & 41 & 2 & 77 & 8 \\
\hline DEVENS, W.G. & & & & \\
\hline More Engineering Graduates. & 35 & 1 & 71 & 40 \\
\hline High Time to Teach Again. & 35 & 2 & 71 & 12 \\
\hline Metric Integration for Basic & & & & \\
\hline Engineering Courses.. & 38 & 2 & 74 & 14 \\
\hline Diliberto, Menno & & & & \\
\hline Engineering Graphics - An & & & & \\
\hline Updating Report & 39 & 2 & 75 & 27 \\
\hline DILLENBECK, Harold L. & & & & \\
\hline Encouraging Creativity in & & & & \\
\hline Engineering Graphics.. & 26 & 2 & 62 & 18 \\
\hline DIXON, W.J. & & & & \\
\hline Development of Shell Plating by the Mean-Normal Method. & 16 & 2 & 52 & 17 \\
\hline
\end{tabular}
```

DOBROVOLNY, Jerry S.
Recipient of the Arthur S.
Williston Award in Technol-
ogy Education.............. 34 3 70 31
Some Comments on the Goals
of Engineering Education... 30 2 66 20
Methods of Descriptive Geo-
metry in Use by Geologists.
DOUGHTIE, V.L.
Drawing in Machine Design.. 10 2 4 46 17
DOWLING, E.J.
Teaching Welding Symbols... 8 3 44 7
DUPIN, M.I.
Historical Essay on the
Services and the Scientific
Words of Gaspard Monge..... 5 3 41 21
DUFF, J.M
Directing Instructions to
Meet Job Requirements: An
Example using Technical
Illustration................ 42 1 78 2.9
DUNCAN, R.L.
Drawing an Angular Perspec-
tive with One Vanishing
Point..................... 32 2 68 16

```
\begin{tabular}{|c|c|c|c|c|}
\hline E & & & & \\
\hline EARLE, J.H. & & & & \\
\hline See also Editorials & & & & \\
\hline Research in Engineering & & & & \\
\hline Graphics...... & 29 & 2 & 65 & 7 \\
\hline A Rare Application of Descriptive Geometry. & 30 & 2 & 66 & 15 \\
\hline Design Problems in Product & 0 & & 66 & 15 \\
\hline Development. & 31 & 3 & 67 & 33 \\
\hline Cover and Title Page for the & & & & \\
\hline Special Edition of the Proceedings of the 1967 Sum- & & & & \\
\hline mer School................... & 31 & 4 & 67 & \\
\hline Design Problems in Systems & & & & \\
\hline Analysis... & 32 & 1 & 68 & 32 \\
\hline A Visiting Engineer Program. & 32 & 2 & 68 & 24 \\
\hline Administration and Evaluat- & & & & \\
\hline ion of Design Projects... & 33 & 2 & 69 & 30 \\
\hline The Relevancy of Engineering & & & & \\
\hline Graphics. & 33 & 3 & 69 & 5 \\
\hline Design Problems & 38 & 2 & 74 & 46 \\
\hline Metric Scales & 38 & 2 & 74 & 48 \\
\hline Evaluation of Team Projects: & & & & \\
\hline Classroom Preparation for & & & & \\
\hline Job Situations & 39 & 3 & 75 & 12 \\
\hline Visiting Engineer Program - & & & & \\
\hline Reviewed.... & 40 & 1 & 76 & 32 \\
\hline EARP, U.F. and MASON, Jr., J.P. & & & & \\
\hline An Approach to Instruction & & & & \\
\hline in Design....... & 36 & 3 & 72 & 22 \\
\hline EDUCATIONAL RELATIONS COM- & & & & \\
\hline MITTEE: & & & & \\
\hline A Proposal for a Technical & & & & \\
\hline One-year Drawing Course for & & & & \\
\hline College Preparatory Students & 30 & 1 & 66 & 23 \\
\hline Engineering Graphics in the & & & & \\
\hline Two-year College....... . . . . & 33 & 1 & 69 & 6 \\
\hline EIDE, Arvid R. & & & & \\
\hline Vancouver in Retrospect & 42 & 3 & 78 & 12 \\
\hline EGGERS, H.C.T. & & & & \\
\hline Administration and Teaching & 4 & 2 & 40 & 4 \\
\hline Check and Double Check. & 6 & 1 & 42 & 4 \\
\hline Descript (Again) & 1 & 1 & 36 & 14 \\
\hline Letter from H.C.T. Eggers & 11 & 3 & 47 & 9 \\
\hline Minnesota Welcomes You. & 11 & 2 & 47 & 9 \\
\hline The Two Languages of the & & & & \\
\hline Engineer . . . . . . . . . . . . . & 15 & 1 & 51 & 26 \\
\hline What Do You Mean "Direct" or an Old Fogey Strikes Back.. & 18 & 2 & 54 & 34 \\
\hline ELROD, S.B. & & & & \\
\hline Implied Shop Run Geometrical & & & & \\
\hline olerances.................. & 23 & 1 & 59 & 17 \\
\hline Accurate Representation of & & & & \\
\hline Circles on Pictorial Draw- & & & & \\
\hline ings..... & 17 & 2 & 53 & 15 \\
\hline British and American Methods of Expressing Tolerances on & & & & \\
\hline Drawings....... & 18 & 1 & 54 & 7 \\
\hline Curtiss-Wright Engineering & & & & \\
\hline Cadette Program at Purdue & & & & \\
\hline University. & 9 & 3 & 45 & 5 \\
\hline More Dimensioning Practice. & 13 & 1 & 49 & 6 \\
\hline EPSTEIN, L. Ivan & & & & \\
\hline One the Non-Projective Trans- & & & & \\
\hline formations of a Nomogram... & 25 & 3 & 61 & 15 \\
\hline ERNEST, Robert P. & & & & \\
\hline The Engineer's Language - & & & & \\
\hline Drawing.. & 29 & 1 & 65 & 17 \\
\hline
\end{tabular}

EUBANKS, W.H. Zones: Clarification of Functions................. 411017710 EVANS, H.T.Jr. An Application of Advanced Graphics: Crystallography. 12 2 48
EVETT, J.B.
Course Structuring for Self-
paced Instruction
37
paced Instruction

\section*{F}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
FELBARTH, Wayne \\
A Letter on Wladaver vs. Lindgren.
\end{tabular} & 30 & 2 & 66 & 28 \\
\hline \multicolumn{5}{|l|}{FELLER, A.} \\
\hline Computer Programming; A Design Aid. & 33 & 3 & 69 & 52 \\
\hline \multicolumn{5}{|l|}{FERRY, A.L.} \\
\hline \multicolumn{5}{|l|}{National Survey for Letter-} \\
\hline \multicolumn{5}{|l|}{ing Requirements in Indus-} \\
\hline ing & 4 & 3 & 40 & 2 \\
\hline \multicolumn{5}{|l|}{FESLER, Eugene V.} \\
\hline \multicolumn{5}{|l|}{Graphics and Its Relation to the Development of} \\
\hline Guided Missiles & 23 & 2 & 59 & 23 \\
\hline \multicolumn{5}{|l|}{FIELD, W. B.} \\
\hline \multicolumn{5}{|l|}{House Planning at The Ohio} \\
\hline State University. & 11 & 1 & 47 & 24 \\
\hline \multicolumn{5}{|l|}{FINLEY, G.T.} \\
\hline \multicolumn{5}{|l|}{The Design Process - Superchair........................ 3814} \\
\hline \multicolumn{5}{|l|}{A Lesson For Detroit, Stu-} \\
\hline \multicolumn{5}{|l|}{FISHER, G.} \\
\hline \multicolumn{5}{|l|}{Graphical Solution for Supersonic Flow Past a Pointed} \\
\hline Axisymmetrical Body & 26 & 2 & 62 & 43 \\
\hline \multicolumn{5}{|l|}{FORD, S.M.} \\
\hline Draftsmen in the Making & 9 & 3 & 45 & 12 \\
\hline \multicolumn{5}{|l|}{FOSS, S.K. and HAINAULT, P.E.} \\
\hline A Graphical Means of Obtain- & & & & \\
\hline ing Slope and Intercept & 36 & 2 & 72 & 41 \\
\hline \multicolumn{5}{|l|}{FOSTER, Chet} \\
\hline Nomography: Do You Practice & & & & \\
\hline What You Teach? & 24 & 2 & 60 & 15 \\
\hline \multicolumn{5}{|l|}{FOSTER, R.J.} \\
\hline Teaching Via Team Projects. & 29 & 1 & 65 & 7 \\
\hline \multicolumn{5}{|l|}{Engineering Student Reten-} \\
\hline tion Study.. & 37 & 3 & 73 & 10 \\
\hline \multicolumn{5}{|l|}{They Who Start in Engineer-} \\
\hline ing. & 38 & 2 & 74 & 33 \\
\hline \multicolumn{5}{|l|}{The Rationale of One Period} \\
\hline Design Problems........... & 36 & 2 & 72 & 2 \\
\hline \multicolumn{5}{|l|}{FOSTER, R.J., and HARTZ, K.E.} \\
\hline \multicolumn{5}{|l|}{Conceptual Design Experiment} \\
\hline in Engineering Graphics & 29 & 3 & 65 & 11 \\
\hline \multicolumn{5}{|l|}{FRANCIS, H.L.} \\
\hline Some Recent Developments In & & & & \\
\hline Drawing Reproductions...... & 14 & 2 & 50 & 33 \\
\hline \multicolumn{5}{|l|}{FRENCH, Thomas E.} \\
\hline \multicolumn{5}{|l|}{The Educational Side of En-} \\
\hline \multicolumn{5}{|l|}{gineering Drawing (Part of} \\
\hline ASEE, then SPEE) & 40 & 3 & 76 & 32 \\
\hline \multicolumn{5}{|l|}{FUCHS, H.O.} \\
\hline Notes on Solutions of Student Design Projects. & 31 & 4 & 67 & 36 \\
\hline \multicolumn{4}{|l|}{Notes on Graphics and Intro-} & 12 \\
\hline \multicolumn{5}{|l|}{FULLER, Marvin} \\
\hline \multicolumn{5}{|l|}{Quality Control Specifications and Their Effect on} \\
\hline Drawings & 23 & 3 & 59 & 38 \\
\hline \multicolumn{5}{|l|}{FURAY, R.D} \\
\hline \multicolumn{5}{|l|}{Engineering Graphics Application at LTV Aerospace Cor-} \\
\hline
\end{tabular}

\section*{G}
\begin{tabular}{lllll} 
GALLAWAY, B.M. and McGUIRE, B.M. & & & \\
Orthographic Projection and & & & & \\
the Close Fitting "Glass Box" & 9 & 2 & 45 & 29 \\
GERARDI, Jasper
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline GRANT, Hiram E. & & & & \\
\hline New Style Drafting Tables.. & 20 & 1 & 56 & 69 \\
\hline Power Threads - A Teaching- & & & & \\
\hline Aid Booklet & 20 & 1 & 56 & 33 \\
\hline An Orthographic Projection & & & & \\
\hline Demonstrating Device & 3 & 3 & 39 & \\
\hline Report of Bibliography & & & & \\
\hline Committee & 12 & 3 & 48 & 35 \\
\hline The Use of Mirrors in Ortho- & & & & \\
\hline graphic Projection. & 2 & 1 & 38 & 22 \\
\hline GRAY, C.H. & & & & \\
\hline A Geometric Approach to & & & & \\
\hline Literature. & 13 & 3 & 49 & 15 \\
\hline GREEN, Daniel & & & & \\
\hline Drawing for Life and Industry & 10 & 1 & 46 & 13 \\
\hline GREENFIELD, Lois B. & & & & \\
\hline An Exploration of Processes & & & & \\
\hline Used In Solving Problems in & & & & \\
\hline Engineering Drawing & 26 & 3 & 62 & 33 \\
\hline GRINTER, L.E. & & & & \\
\hline Graphical Communications - & & & & \\
\hline An Aid to Creative Activity & 18 & 1 & 54 & 24 \\
\hline GRISWOLD, E.M. & & & & \\
\hline Acceptance and Response to & & & & \\
\hline Presentation of Disting- & & & & \\
\hline uished Service Avard. & 33 & 3 & 69 & 13 \\
\hline Some Remarks by the Past & & & & \\
\hline Chairman. & 26 & 3 & 62 & 29 \\
\hline The Cooper Union for the & & & & \\
\hline Advancement of Science. & 15 & 3 & 51 & 6 \\
\hline GROVES, E.D. & & & & \\
\hline A Graphical Analysis of & & & & \\
\hline Shading. & 34 & 1 & 70 & 52 \\
\hline GUERARD, Michael P. & & & & \\
\hline Circles Tangent to Three & & & & \\
\hline Circles, Problem Solution.. & 26 & 2 & 62 & 19 \\
\hline When is a Cube Not a Cube?. & 28 & 3 & 64 & 31 \\
\hline
\end{tabular}

\section*{H}
\begin{tabular}{|c|c|c|c|c|}
\hline HACHEMEISTER, C.A. and CEFOLA, & & & & \\
\hline Developable Transition & & & & \\
\hline Pieces Joining Two Plane & & & & \\
\hline Openings. & 6 & 2 & 42 & 10 \\
\hline HAINAULT, P.E. and FOSS, S.K. & & & & \\
\hline A Graphical Means of Obtaining Slope and Intercept. & 36 & 2 & 72 & 41 \\
\hline HAGEN, R.R. & & & & \\
\hline "Advanced Drawing" - Its & & & & \\
\hline Usefulness to the Engineer- & & & & \\
\hline ing Student and to Industry. & 16 & 2 & 52 & 23 \\
\hline HAINEY, M. & & & & \\
\hline Problem Solution. & 12 & 2 & 48 & 18 \\
\hline HALASZ, Andre' & & & & \\
\hline Lulu Solution to Lulu Problem. & 23 & 3 & 59 & 17 \\
\hline Concerning the Problem On & & & & \\
\hline Page 41 of May 1957 Issue & & & & \\
\hline Of EDJ. . & 21 & 3 & 57 & 40 \\
\hline Basic Method of Direct & & & & \\
\hline Projection. & 20 & 2 & 56 & 42 \\
\hline About Scales & 28 & 3 & 64 & 22 \\
\hline HALASZ, S.T. & & & & \\
\hline Dihedral Angle Solved by & & & & \\
\hline Revolution. & 31 & 1 & 67 & 38 \\
\hline HALES, V.D. & & & & \\
\hline Development and Use of Ap- & & & & \\
\hline titude and Training Tests & & & & \\
\hline in Engineering Drawing. & 3 & 2 & 39 & 7 \\
\hline HALL, C.E. & & & & \\
\hline Creative Design and Engineer- & & & & \\
\hline ing Graphics at Louisiana & & & & \\
\hline State University........ & 35 & 2 & 71 & 24 \\
\hline Computer Graphics - Its Role & & & & \\
\hline In Graphics and Design & & & & \\
\hline Courses.. & 36 & 2 & 72 & 19 \\
\hline The Use of Determinants In & & & & \\
\hline The Construction of Nomo- & & & & \\
\hline graphs...... & 38 & 2 & 74 & 39 \\
\hline What Others Are Doing In & & & & \\
\hline Graphics In Foreign & & & & \\
\hline Countries. & 40 & 2 & 76 & 39 \\
\hline Ideas: Imaginative and & & & & \\
\hline Practical.. & 41 & 1 & 77 & 7 \\
\hline HALL, C.E. and SArDS, C.T. & & & & \\
\hline Survey: Which Degree-de- & & & & \\
\hline partments Include A Sraphics & & & & \\
\hline Requirement? & 39 & 3 & 75 & 10 \\
\hline hall, Newman A & & & & \\
\hline Perspectives in Engineering & & & & \\
\hline Graphics. & 27 & 1 & 63 & 6 \\
\hline HAMMERLE, J.B. & & & & \\
\hline Mechanical Differentiation. & 33 & 3 & 69 & 44 \\
\hline HAMILTON, Maurice E. & & & & \\
\hline A New Approach to Teaching & & & & \\
\hline Granhics. & 27 & 2. & 63 & 38 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{HAPMOND, R.H.} \\
\hline \multicolumn{5}{|l|}{A Mathematician or A} \\
\hline Graphician? & 23 & 2 & 59 & 14 \\
\hline I Need Help & 24 & 2 & 60 & 18 \\
\hline \multicolumn{5}{|l|}{Fundamentals Course At} \\
\hline The USM Academy & 27 & 3 & 63 & 38 \\
\hline \multicolumn{5}{|l|}{A Message From Your} \\
\hline Chairman........ & 28 & 3 & 64 & 8 \\
\hline \multicolumn{5}{|l|}{Comments on the 1967 Summer} \\
\hline School & 31 & 3 & 67 & 19 \\
\hline Engineering Graphics Passe'? & 36 & 1 & 72 & 29 \\
\hline \multicolumn{5}{|l|}{Freshman Engineering Curri-} \\
\hline Requested & 41 & 3 & 77 & 18 \\
\hline \multicolumn{5}{|l|}{HANG, R.I.} \\
\hline \multicolumn{5}{|l|}{Computer-drawn Curves Using} \\
\hline Spline Techniques.......... & 39 & 1 & 75 & 35 \\
\hline \multicolumn{5}{|l|}{Computer Graphics Using A} \\
\hline Plasma Panel & 40 & 3 & 76 & 24 \\
\hline \multicolumn{5}{|l|}{HARDELL, J.A.} \\
\hline \multicolumn{5}{|l|}{Testing Student Understanding} \\
\hline Of Three-dimensional Space. & 42 & 1 & 78 & 10 \\
\hline \multicolumn{5}{|l|}{HARPELL , J.R.} \\
\hline \multicolumn{5}{|l|}{The Role of Graphics In} \\
\hline Industry. & 36 & 1 & 72 & 37 \\
\hline \multicolumn{5}{|l|}{HARRISON, Marc} \\
\hline Design For The Donor & 38 & 3 & 74 & 19 \\
\hline \multicolumn{5}{|l|}{HARTZ, K.E. and FOSTER, R.J.} \\
\hline \multicolumn{5}{|l|}{Conceptual Design Experiment} \\
\hline in Engineering Graphics.... & 29 & 3 & 65 & 11 \\
\hline \multicolumn{5}{|l|}{HASTINGS, Russell} \\
\hline The Decimal Inch. & 31 & 2 & 67 & 11 \\
\hline \multicolumn{5}{|l|}{HAUGHTON, Kenneth E.} \\
\hline \multicolumn{5}{|l|}{Find the Shortest Horizontal} \\
\hline \multicolumn{5}{|l|}{Connector Between Two Skew} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Lines Using Only Two Given}} \\
\hline & & & & 70 \\
\hline Crossword Puzzle. & 20 & 2 & 56 & 50 \\
\hline \multicolumn{5}{|l|}{HAYES, L.D.} \\
\hline Empirical Design, A Preparation for Theoretical Design. & 4 & 1 & 40 & 6 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{HEACOCK, Frank A.}} \\
\hline & & & & \\
\hline An Expression of Apprecia- & 20 & 3 & 56 & 23 \\
\hline \multicolumn{5}{|l|}{Problems In Graphical Ana-} \\
\hline lysis and Mechanisms... & 22 & 2 & 58 & 48 \\
\hline \multicolumn{5}{|l|}{Application of Advanced} \\
\hline Graphics. & 16 & 1 & 52 & 11 \\
\hline \multicolumn{5}{|l|}{Grading Engineering Draw-} \\
\hline ings... . . . . . . . . . . . . & 4 & 1 & 40 & 10 \\
\hline \multicolumn{5}{|l|}{Graphic Aids to Three-Dim- 5410} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{A Message to the Members}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{of the Division of Engineer-} \\
\hline ing Drawing............ & 12 & 1 & 48 & 5 \\
\hline \multicolumn{5}{|l|}{Report of the Division Con-} \\
\hline \multicolumn{5}{|l|}{ferences at Cambridge,} \\
\hline June, 1927 & 1 & 3 & 37 & 20 \\
\hline Texas Calling & 12 & 3 & 48 & 5 \\
\hline \multicolumn{5}{|l|}{Visualization Tests For} \\
\hline Beginners. & 2 & 2 & 38 & 18 \\
\hline \multicolumn{5}{|l|}{The Role of Graphics In} \\
\hline Engineering Education. & 18 & 1 & 54. & 26 \\
\hline \multicolumn{5}{|l|}{The Educational Value of.} \\
\hline Graphics & 30 & 3 & 66 & 23 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{HEALY, Hilliam L.}} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{The Function of the Engineer, Designer and Draftsman in}} \\
\hline & & & & \\
\hline Industry. & 21 & 1 & 57 & 12 \\
\hline \multicolumn{5}{|l|}{HENDRY, Wickliffe B.} \\
\hline \multicolumn{5}{|l|}{Application of Graphics} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{And Nomography to Heat 25.61}} \\
\hline & & & & \\
\hline
\end{tabular}

\section*{H}
\begin{tabular}{|c|c|c|c|c|}
\hline ENNING, R.T. & & & & \\
\hline And Again - Descript... Relation of High School & 1 & 3 & 37 & 14 \\
\hline Drawing to the Drawing & & & & \\
\hline Work Required in College. & 6 & 1 & 42 & 6 \\
\hline HENNINGER, J.K. and ANDERSON, D. & & & & \\
\hline The Anderson-Henninger & & & & \\
\hline Syndrome. & 39 & 2 & 75 & 26 \\
\hline HERNANDEZ, John H. & & & & \\
\hline Problems in Administrating & & & & \\
\hline Engineering Sraphics As A & & & & \\
\hline Part of Mechanical Engineer- & & & & \\
\hline ing. & 2.6 & 1 & 62 & 20 \\
\hline HESSE, Herman C & & & & \\
\hline What Engineering Departments & & & & \\
\hline Expect from the Drawing & & & & \\
\hline Courses & 22 & 3 & 58 & 2.8 \\
\hline Integration & 22 & 3 & 58 & 28 \\
\hline The Correlation of Engineer- & & & & \\
\hline ing Drawing and Shop Pro- & 6 & 2 & 42 & 13 \\
\hline Integration (Mechanical & & & & \\
\hline Technology) & 1 & 1 & 36 & 9 \\
\hline HESSEMER, P . & & & & \\
\hline A Close Approximation for & & & & \\
\hline the Squaring of the Circle. & 18 & 3 & 54 & 30 \\
\hline Engineering Educator in the & & & & \\
\hline Freshman Drawing Room. & 11 & 3 & 47 & 31 \\
\hline HIGBEE, Frederic G. & & & & \\
\hline The Esthetic Functions of & & & & \\
\hline Our Disciplines. & 20 & 3 & 56 & 35 \\
\hline The Development of Graph- & & & & \\
\hline ical Representation. & 22 & 2 & 58 & 14 \\
\hline Why Engineering Drawing? & 29 & 1 & 65 & 19 \\
\hline Twenty Years Ago. & 20 & 3 & 56 & 22 \\
\hline The Educational Contribu- & & & & \\
\hline tions of Engineering Draw- & & & & \\
\hline ing. . . . . . . . . . . . . . . . . . . . & 4 & 3 & 40 & 11 \\
\hline Engineering Drawing Divis- & & & & \\
\hline ion Objectives........... & 14 & 2 & 50 & 5 \\
\hline Humanistic-Cultural Contri- & & & & \\
\hline butions Inherent in and & & & & \\
\hline Closely Associated with & & & & \\
\hline Engineering Drawing and & & & & \\
\hline Descrintive Geometry. & 12 & 1 & 48 & 8 \\
\hline The Lamme Award to Thomas & & & & \\
\hline Ewing French...... & 7 & 3 & 43 & 1 \\
\hline The New Standards for Draw- & & & & \\
\hline ing and Drafting Room & & & & \\
\hline Practice. & 7 & 2 & 43 & 11 \\
\hline Response - A Speech. & 14 & 3 & 50 & 9 \\
\hline Stimulating Student Interest & & & & \\
\hline in Engineering Drawing and & & & & \\
\hline Descrintive Geometrv. & 13 & 1 & 4.9 & 11 \\
\hline HILL, Ivan L. & & & & \\
\hline Personality Sketch of Pro- & & & & \\
\hline fessor Henry Cecil Spencer. & 18 & 1 & 54 & 11 \\
\hline Award Offered for Excel1ance of Descriptive Geo- & 29 & 1 & 65 & 21 \\
\hline HILL, J.L., Jr. & & & & \\
\hline What Price Culture In En- & & & & \\
\hline gineering Drawing, Descrip- & & & & \\
\hline tive Geometry and Elemen- & & & & \\
\hline tary Machine Design, Part 1. & 3 & 1 & 38 & 6 \\
\hline HILLS, O.R. & & & & \\
\hline Springs-Helical and Flat... & 15 & 3 & 51 & 27 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Inventive Design in Instruction Techniques. & 30 & 2 & 66 & 11 \\
\hline Introduction: The 1957 & & & & \\
\hline Summer School. & 31 & 4 & 67 & 1 \\
\hline Some Thoughts on the Wri- & & & & \\
\hline ting of Design Projects. & 32 & 3 & 68 & 28 \\
\hline Conventions Revisited! & & & & \\
\hline (Guest Editorial - A Ren1y). 1971-72 and the Next Decade, & 35 & 1 & 71 & 2. \\
\hline An Annual Report to the & & & & \\
\hline Division & 36 & 2 & 72 & 32 \\
\hline HILLIARD, Garland K. & & & & \\
\hline Limerick Laureates & 39 & 2 & 75 & 44 \\
\hline Limerick Laureates & 39 & 3 & 75 & 33 \\
\hline Limerick Laureat & 40 & 2 & 76 & 45 \\
\hline HINGSBERG, T. & & & & \\
\hline Slide Making and Its Use As A Visual Aid. & 15 & 2 & 51 & 25 \\
\hline HIRSCH, R.A. and CHIH WU & & & & \\
\hline Computer-aided Graph & & & & \\
\hline Paper Construction & 42 & 3 & 78 & 38 \\
\hline HOAGLAND, Donald P. & & & & \\
\hline Results of Mechanical & & & & \\
\hline Drawing Study. & 25 & 3: & 61 & 23 \\
\hline HOELSCHER, Randolph P. & & & & \\
\hline Effective Programs in Engineering Graphics, How Shall & & & & \\
\hline They Be Taught?......... & 24 & 1 & 60 & 19 \\
\hline The Contribution of Engi- & & & & \\
\hline neering Drawing in an Engineering Educational Program. Discussion of S.J. Berard's & 16 & 3 & 52 & 8 \\
\hline Paper, "Secondary School & & & & \\
\hline Drawing" & 3 & 4 & 39 & 5 \\
\hline The Education of Drawing & & & & \\
\hline Teachers & 7 & 2 & 43 & 2 \\
\hline A New Method of Axonometric & & & & \\
\hline Projection...... & 8 & 1 & 44 & 2 \\
\hline Objectives of Engineering & & & & \\
\hline Drawing Courses......... & 13 & 1 & 49 & 13 \\
\hline A Reappraisal of Engineer- & & & & \\
\hline ing Drawing. & 18 & 2 & 54 & 12 \\
\hline Standards for Drawing and & & & & \\
\hline Drafting Practice & 13 & 1 & 49 & 23 \\
\hline The Year Ahead & 4 & 1 & 40 & 1 \\
\hline HOLLAND, Edward, Jr & & & & \\
\hline An Efficient Plan Storage & & & & \\
\hline File. & 41 & 3 & 77 & 35 \\
\hline Teaching with Slides In & & & & \\
\hline Graphics. & 40 & 1 & 76 & 27 \\
\hline Design Simplificat & 40 & 1 & 76 & 42 \\
\hline An Exercise in Coordinate & & & & \\
\hline Plotting & 41 & 1 & 77 & 54 \\
\hline HOLLAND, U.C. & & & & \\
\hline A New Drawing Table. & 2 & 2 & 38 & 14 \\
\hline HOLMES, James R. & & & & \\
\hline Trimetric Projection - & & & & \\
\hline Another Reason and Another & & & & \\
\hline r.ay . . . . . . . . . . & 25 & 1 & 61 & 20 \\
\hline
\end{tabular}

\section*{H}
\begin{tabular}{|c|c|c|c|c|}
\hline HOOD, George J. & & & & \\
\hline Nearly 79, Always Busy, & 20 & 3 & 56 & \(2 ¢\) \\
\hline Why the Direct Method of & & & & \\
\hline Descrintive Geometry. & 18 & 3 & 54 & 36 \\
\hline A Common Error in Drawing & & & & \\
\hline and Descriptive Feometry & & & & \\
\hline Textbooks. & 3 & 3 & 39 & \\
\hline A Common Error in Drawing & & & & \\
\hline and Descriptive Geometry & & & & \\
\hline Textbooks & 5 & 1 & 41 & 18 \\
\hline Descriptive Geometry Methods & 1 & 3 & 37 & 7 \\
\hline Developing Responsibility and Initiative in Students & & & & \\
\hline Through Teaching Lettering & & & & \\
\hline and Sketching & 11 & 3 & 47 & 1 \\
\hline Graphics and A Lawsui & 14 & 1 & 50 & 1 \\
\hline Just a Few Lines. & 16 & 3 & 52 & \\
\hline Perspective Views By & & & & \\
\hline Photography. & 8 & 3 & 44 & 17 \\
\hline Holley Medal Recipient & 19 & 3 & 55 & 32 \\
\hline HRACHOVSKY, F.M. & & & & \\
\hline Technological Education and & & & & \\
\hline Graphics in Czechoslovakia. & 25 & 1 & 61 & 13 \\
\hline A Solution to a Problem In & & & & \\
\hline Vol. 29, No. \(2,1965, \mathrm{pg} .40\). & 30 & 2 & 66 & 55 \\
\hline HULLEY, Clair & & & & \\
\hline Logarithmic Scale Computer & & & & \\
\hline Program. & 33 & 3 & 69 & 59 \\
\hline Scales and Alignment Charts & & & & \\
\hline Using A Digital Plotter - & & & & \\
\hline Part One. & 38 & 2 & 74 & 27 \\
\hline Part Two & 38 & 3 & 74 & 17 \\
\hline Punish Them For They See & & & & \\
\hline & 41 & 3 & 77 & 60 \\
\hline Contouring & 41 & 2 & 77 & 60 \\
\hline Cover Page: Isothermal Map & & & & \\
\hline Plot. See note on page 6 & & & & \\
\hline of the issue & 41 & 1 & 77 & CP \\
\hline HUNT, J.H. & & & & \\
\hline The S.A.E. Drafting & & & & \\
\hline Standards. & 41 & 1 & 50 & 13 \\
\hline HUTCHINSON, G.E. & & & & \\
\hline The Overlay in Engineering & & & & \\
\hline Graphics. . . . . . & 41 & 3 & 77 & 58 \\
\hline HUZARSKI, Richard G. & & & & \\
\hline Introduction to Nomography & & & & \\
\hline in Engineering Drawing. & 2.2 & 2 & 58 & 40 \\
\hline Construction of Isometric & & & & \\
\hline Block Diagrams in Carto- & & & & \\
\hline graphic Work. & 14 & 3 & 50 & 20 \\
\hline
\end{tabular}

\section*{I}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{IODICE, R.P.} \\
\hline \multicolumn{5}{|l|}{Descriptive Geometry As} \\
\hline Applied to Shipbuilding. & 16 & 2 & 52 & 7 \\
\hline \multicolumn{5}{|l|}{IRISH, Sumner B.} \\
\hline \multicolumn{5}{|l|}{Graphical Method in Error} \\
\hline Analysis of the Photogrammetric Problem. & 26 & 1 & 62 & 19 \\
\hline \multicolumn{5}{|l|}{IRWIN, R.R.} \\
\hline \multicolumn{5}{|l|}{A Non-Credit Course in} \\
\hline \multicolumn{5}{|l|}{Drawing in Lieu of High} \\
\hline \multicolumn{5}{|l|}{School Drawing for Students} \\
\hline Deficient in High School & & & & \\
\hline Drawing. & 12 & 2 & 48 & 5 \\
\hline
\end{tabular}

DICE, R.P. Applied to Shipbuilding.... 162
IRISH, Sumner B.
Graphical Method in Error
Analysis of the Photo-
grammetric Problem......... \(26 \quad 1 \quad 6219\)
RNIN, R.R.
A Non-Credit Course in
School Drawing for Students
Drawing........................ 12 2 4825

\section*{J}
\begin{tabular}{|c|c|c|c|c|}
\hline JACKSON, A. & & & & \\
\hline Student Checking and & & & & \\
\hline Dimensioning of Detail & & & & \\
\hline Drawings. & 6 & 1 & 42 & 8 \\
\hline JUR, T.A. and SARRAF, Mohammad & & & & \\
\hline A Visual Aid for Instruction & & & & \\
\hline in Orthographic Projection. & 42 & 1 & 78 & 9 \\
\hline JACUNSKI, E.W. & & & & \\
\hline Address of Welcome to the & & & & \\
\hline 1967 Summer School on Cre- & & & & \\
\hline ativity and Design......... & 31 & 3 & 67 & 17 \\
\hline Also in the Special Edition. & 31 & 4 & 67 & 3 \\
\hline Summary: Engineering & & & & \\
\hline Graphics Summer School of & & & & \\
\hline 1967 & 31 & 4 & 67 & 77 \\
\hline Engineering Design and & & & & \\
\hline Engineering Graphics & 32 & 1 & 68 & 29 \\
\hline 'Graphics Extracts"'. & & & & \\
\hline (from ECPD Goals Report) & 30 & 1 & 66 & 26 \\
\hline JAFFE, W.J. & & & & \\
\hline New Teaching Techniques: & & & & \\
\hline The Basic Ingredient & 36 & 3 & 72 & 28 \\
\hline JASPER, Mary & & & & \\
\hline Limerick Laureates & 41 & 1 & 77 & 45 \\
\hline Comments on the DeJong art & & & & \\
\hline icle on Visualization in & & & & \\
\hline the same issue. & 41 & 1 & 77 & 53 \\
\hline JENETTE, R.A. & & & & \\
\hline Fido's Chewing Problem. & 18 & 2 & 54 & 33 \\
\hline JOHNSON, Gary and COZZENS,C.R. & & & & \\
\hline The Summer Drafting Institute & & & & \\
\hline at Texas A\&M University & & & & \\
\hline 1965. & 30 & 3 & 66 & 19 \\
\hline JOHNSON, J.S. & & & & \\
\hline Communication Needs in Engineering Education. & 30 & 1 & 66 & 11 \\
\hline
\end{tabular}

JACKSON, A.
Student Checking and Dimensioning of Detail
JUR, T.A. and SARRAF, Mohammad A Visual Aid for Instruction in Orthographic Projection. 42 1 78
JACUNSKI, E.W.
Address of Welcome to the
1967 Summer School on Cre-
ativity and Design........... \(31 \quad 3 \quad 6717\)
Also in the Special Edition. 3144673
Summary: Engineering
1967......................... 314477

Engineering Design and
Engineering Graphics........ 32 1 68
(from ECPD Goals Report)... \(30 \quad 1 \quad 6626\)
JAFFE, W.J.
New Teaching Techniques:
The Basic Ingredient....... \(36 \quad 3 \quad 7228\)
Limerick Laureates.......... 41117745
Comments on the DeJong art-
icle on Visualization in
the same issue.............. 41 1 7753
Fido's Chewing Problem..... \(18 \quad 2 \quad 5433\)
JOHNSON, Gary and COZZENS,C.R.
The Summer Drafting Institute
at Texas A\&M University
JOHNSON, J.S.
Communication Needs in Engi-
neering Education........... \(3 n 166\)
1

\section*{K}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
KARPLUS, A.A. \\
Realism in Freshman Engineering.
\end{tabular} & 31 & 3 & 67 & 25 \\
\hline \multicolumn{5}{|l|}{ATZ, H.H.} \\
\hline \multicolumn{5}{|l|}{An Application of Technical} \\
\hline Sketching in Industry & 10 & 3 & 46 & 6 \\
\hline Checking Drawings & 10 & 2 & 46 & 16 \\
\hline Technical Sketching & 9 & 2 & 45 & 13 \\
\hline \multicolumn{5}{|l|}{Visualization of Motion by} \\
\hline Pivoted Cutouts & 9 & 3 & 45 & 28 \\
\hline \multicolumn{5}{|l|}{KEARNS, C.H.} \\
\hline \multicolumn{5}{|l|}{Chart Distortion in the} \\
\hline Construction of Nomograms. & 19 & 1 & 55 & 14 \\
\hline Slide and Disc Calculators. & 22 & 1 & 56 & 29 \\
\hline A Computer Graphics Package & 37 & 1 & 73 & 2 \\
\hline Chairman's Message & 42 & 3 & 78 & 5 \\
\hline KEECH, R.A. and REYNOLDS, R.V. Graphics - Indispensible in Machine Design & \multicolumn{3}{|c|}{KEECH, R.A. and REYNOLDS, R.W.} & 36 \\
\hline \multicolumn{5}{|l|}{KEHOE, E.A.} \\
\hline The Men on the Boards & 18 & 2 & 54 & 7 \\
\hline \multicolumn{5}{|l|}{KEICHER, Paul E.} \\
\hline \multicolumn{5}{|l|}{An Aid to Perspective} \\
\hline Drawing & 22 & 2 & 58 & 42 \\
\hline \multicolumn{5}{|l|}{KEITH, C.W.} \\
\hline \multicolumn{5}{|l|}{The Ohio Association for} \\
\hline Engineering Graphics & 42 & 2 & 78 & 9 \\
\hline \multicolumn{5}{|l|}{KELSO, Elizabeth A.} \\
\hline Solve This One. & 20 & 2 & 56 & 49 \\
\hline \multicolumn{5}{|l|}{KELSO, R.P. 20.} \\
\hline Puzzle Corner (Editor) & 42 & 2 & 78 & 46 \\
\hline Puzzle Corner (Editor) & 42 & 3 & 78 & 61 \\
\hline \multicolumn{5}{|l|}{KEMP, Robert K.} \\
\hline \multicolumn{5}{|l|}{A New Pictorial Piping} \\
\hline Method & 22 & 2 & 58 & 45 \\
\hline \multicolumn{5}{|l|}{KEYT, D.E.} \\
\hline \multicolumn{5}{|l|}{Graphical Determination of} \\
\hline \multicolumn{5}{|l|}{Flow Area Through Radial} \\
\hline \multicolumn{5}{|l|}{Flow Compressor or Turbine} \\
\hline \multicolumn{5}{|l|}{KILLEN, W.C.} \\
\hline \multicolumn{5}{|l|}{Uses of Graphical Communication in Industry.......... 301366} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{KINSLOW, Ray}} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{A Graphical Method of Plotting Electron Trajectories}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{in Crossed Electric and Mag- 1925} \\
\hline \multicolumn{5}{|l|}{KINNER, H.G.} \\
\hline \multicolumn{5}{|l|}{An Introduction to Product-} \\
\hline \multicolumn{5}{|l|}{KINTNER, R.C.} \\
\hline \multicolumn{5}{|l|}{Importance of Engineering} \\
\hline \multicolumn{5}{|l|}{Drawing to a Chemical} \\
\hline Engineer. & 4 & 2 & 40 & 17 \\
\hline \multicolumn{5}{|l|}{KIRBY, R.S} \\
\hline \multicolumn{5}{|l|}{Why Not An Examination} \\
\hline Exchange?. . & 2 & 2 & 38 & 15 \\
\hline \multicolumn{5}{|l|}{Some Practical Pedagogic} \\
\hline Paraphernalia & 6 & 2 & 42 & 7 \\
\hline \multicolumn{5}{|l|}{KIRKPATRICK, E.G.} \\
\hline \multicolumn{5}{|l|}{A Rating Scale for Grading} \\
\hline Engineering Drawings & 13 & 3 & 49 & 17 \\
\hline \multicolumn{5}{|l|}{KLIPHARDT, Raymond A.} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Descriptive Geometry Courses Which Comply With the}} \\
\hline & & & & \\
\hline Evaluation Renort. & 27 & 1 & 63 & 42 \\
\hline
\end{tabular}

KNOBLOCK, E.W.
Teaching Machines - An
Application to Engineering
Drawing....................... 262632
Can You Draw the Correct
Rightend view? A Puzzler.. 30
1 6643 KOEPKE, C.A.

Good Engineering Information
for Production............... 142050
KRAEHENBUEHL, J.O.
Desirable Characteristics
of Drafting Room Lighting.. 6
KRE IMER, B.L.
See also Editorials
What's In A Name? (The 1967
Summer School Revisited)
An Editorial................. 332691
1969-70, A Memorable Year
Editorial..................... 34230
\(\begin{array}{llllll}\text { Conventions! (An Editorial) } & 34 & 3 & 70 & 3\end{array}\)
Technion: Isaeli Institute
of Technology - A Visit
with Friends................. 36167216
KREIMER, B.L. and ARWAS,
Yaakov.
Engineering Decision-Making
With the Computer.......... 42307855
KRIGMAN, Alan
Encoding the Prototype
The Engineering Mode1...... \(31 \quad 2 \quad 6715\)
KRONER, Klaus E.
Modernization of Basic
Drawing Courses............. \(22 \quad 2 \quad 5839\)
Trigonometric Truss........ \(26 \quad 3 \quad 6251\)
The Workshops (edited by
K.E.K.)....................... 3146440

A Look Beyond................ 33 1 69
Computer Mediated Instr-
uction Programs in Engi-
neering Graphics............. \(37 \quad 2 \quad 738\)
ASEE Members Face the Met-
rication Issue.............. \(40 \quad 3 \quad 7611\)
References on Metrication
Standards
41117764
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
I
\] & & & & & \begin{tabular}{l}
LEUBA, R.J. \\
What Does Engineering Design Mean?. \\
LEVENS, A.S. \\
Administration of An Engineering Graphics and Design
\end{tabular} & 37 & 2 & 73 & 24 \\
\hline LAMBERT, Walter E. & & & & & Course. & 2.7 & 1 & 63 & 21 \\
\hline Trisection of an Arbitrary & & & & & Computerized Nomogram Plotting & 29 & 1 & 65 & 2 \\
\hline Acute Angle.
LAMBERT, W.G. & 29 & 1 & 65 & 30 & ting. \({ }^{\text {Graphic }}\) Science - - A New & & & & \\
\hline A Graphical Solution For & & & & & and Challenging Frontier. & 24 & 3 & 60 & 0 \\
\hline The Powers and Product Com- & & & & & Workshop on Nomography. & 28 & 2 & 64 & 6 \\
\hline binations of the Powers of & & & & & Advanced Degrees in Graphics & & 1 & 38 & 16 \\
\hline \(\operatorname{Sin} \theta\) and \(\cos \theta\) & 30 & 2 & 66 & 36 & Graphics in Research....... & 15 & 2 & 51 & 13 \\
\hline A Sraphical Method For Con- & & & & & Projections - Engineering & & & & \\
\hline structing a Time-displacement Curve From A Phase- & & & & & Drawing - Engineering Training. & 4 & 3 & 40 & 17 \\
\hline space Trajectory. & 31 & 2 & 67 & 21 & Quinine - A Survey of Indus- & & & & \\
\hline The Use of Graphics In Engineering Analysis. & 30 & 1 & 66 & 15 & try's Opinion of Our Students Teaching Introductory Nomo- & 1 & 1 & 36 & 1 \\
\hline LAND, M. H . & & & & & graphy in Basic Graphics & & & & \\
\hline Historical Development of & & & & & \begin{tabular}{l}
Courses. \\
The Thought-Model method of
\end{tabular} & 20 & 2 & 56 & 35 \\
\hline Graphics........... & 40 & 2 & 76 & 28 & & & & & \\
\hline \begin{tabular}{l}
LANER, F.J. \\
Measure for Measure - A
\end{tabular} & & & & & tion.........: & 30 & 3 & 66 & 13 \\
\hline Universal Language for International Standards......... & 38 & 1 & 74 & 23 & LEWIN, Mordechai On Conic Sections & 35 & 1 & 71 & 26 \\
\hline LANG, Robert S. & & & & & LEWIS, Ralph E. & & & & \\
\hline Graphic Science and the High & & & & & New and Old Style Drafting & 21 & 2 & 57 & 33 \\
\hline School Teacher............. & 25 & 1 & 61 & 10 & Tables.iiio..... & & & & \\
\hline Educational Relations Committee Proposal for College & & & & & \begin{tabular}{l}
LICHTY, Nilliam H. \\
Between the Itch and the
\end{tabular} & & & & \\
\hline Preparatory Drawing Course. & 30 & 1 & 66 & 23 & Answer. & 29 & 2 & 65 & \\
\hline LANGSDORF, A.S. & & & & & LINDGREN, C.E.S. & & & & \\
\hline Art Applied to Engineering. & 3 & 1 & 38 & 16 & \begin{tabular}{l}
Descriptive Geometry of Four \\
Dimensions.
\end{tabular} & 27 & 3 & 63 & 44 \\
\hline LaRUE, F.L., Jr. & & & & &  & & & & \\
\hline Creativity - What It Is and
What We Have To Do With It. & 33 & 2 & 69 & 23 & tals of Descriptive Geometry & 29 & 1 & 65 & \(\bigcirc\) \\
\hline What We Have To Do With It.
LaRUE, R.D. & 33 & & & & Symmetry in a Four-Dimen- & & & & \\
\hline Creative Ingenuity - Or & & & & & sional Space...... & 29 & 2 & 65 & 19 \\
\hline Frustration. & 41 & 3 & 77 & 36 & Where (Some) Angels Fail & & & & \\
\hline How Would You Drav It? & 42 & 2 & 78 & 42 & to Tread. & 29 & 3 &  & 26 \\
\hline LEET, H.W. & & & & & A Letter to the Editor.... A Minimum Path Problem Re- & & 2 & & \\
\hline What Price Culture In Engineering Drawing, Descriptive & & & & & \begin{tabular}{l}
considered. \\
LINDGREN, C.E.S and BORECKY
\end{tabular} & 33 & 2 & 69 & 52 \\
\hline Geometry and Elementary Machine Design? & 3 & 1 & 38 & 10 & Lindgren and Borecky on & 31 & 2 & 67 & 4 \\
\hline LEHNERT, Reinhard & & & & & LOFGREN, Kenneth E & & & & \\
\hline A Contribution To Reform of & & & & & A Backstage of Genius & 26 & 2 & 62 & 8 \\
\hline Mathematics and Art Teach- & 39 & 1 & 75 & 7 & Teaching Case Study No. 1- & & & & \\
\hline Layered Geometrical Surface & & & & & Teaching to Develop Imagin- & & & & 27 \\
\hline Designs: 'Visual Music"... & 42 & 3 & 78 & 42 & ation and Inventiveness... & 25 & , & & 27 \\
\hline LEIDEL, F.O. & & & & & Teaching to Develop Imagin- & & j & & \\
\hline We've Got Those Metrication
Blues!.................... & & 1 & 77 & 21 & ation and Inventiveness. & 26 & 1 & 62 & 18 \\
\hline Blues!.................... \({ }_{\text {Con }}\) & 41 & 1 & 77 & & LOVE, S.F. & 41 & 2 & 77 & 19 \\
\hline opable Surface............. & 21 & 2 & 57 & 20 & LOVING, R.O. & & & & \\
\hline An Exploration of Processes & & & & & Elimination of the Inter- & & & & \\
\hline Used in Solving Problems In Engineering Drawing........ & 26 & 2 & 62 & 33 & mediate View in Axonometrics & & & & 9 \\
\hline LEIGHTON, A.W. & & & & & by Direct Proportion.
UZADDFR, Warren J. & 14 & 2 & & \\
\hline The Unveiling of the Bas- & & & & & See also Editorials & & & & \\
\hline Relief of Dean Gardner & & & & & Status of Engineering Draw- & & & & \\
\hline Chace Anthony at Tufts College. \(\qquad\) & 3 & 3 & 39 & 2 & ing - 1957 Survey for the & & & & \\
\hline LEMKE, E.A., et. al & & & & & Drawing Division of ASEE... & 2.2 & 1 & 58 & 14 \\
\hline Creative Expression in Engineering & 24 & 2 & 60 & 19 & Backward and A Long Look Ahead & 30 & 1 & 66 & 25 \\
\hline LENHART, J & & & & & & & 1 & & \\
\hline Solution for Professor Porter's Cone Problem...... & 10 & 3 & 46 & 29 & & & & & \\
\hline
\end{tabular}

\section*{M}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{MACHINE DESIGN (A Reprint):} \\
\hline Computer Reassured Daredevil & & & & \\
\hline Before He Spiraled His Car. & 36 & 2 & 72 & 7 \\
\hline \multicolumn{5}{|l|}{MACHOVINA, ?.E.} \\
\hline \multicolumn{5}{|l|}{Methods of Presenting Di-} \\
\hline \multicolumn{5}{|l|}{Personality Sketch of Prof.} \\
\hline Ralph S. Paffenbarger & 17 & 2 & 53 & 1 \\
\hline \multicolumn{5}{|l|}{MacLELLAN, Andrew} \\
\hline \multicolumn{5}{|l|}{The Importance of Engineering Graphics to the} \\
\hline Professional Engineer & 22 & 3 & 58 & 11 \\
\hline \multicolumn{5}{|l|}{MAECHLER, H.C.} \\
\hline \multicolumn{5}{|l|}{Creating Interest in} \\
\hline Drawing & 5 & 3 & 41 & 19 \\
\hline \multicolumn{5}{|l|}{MALLON, A.H.} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Perspective: A Case for the}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Teaching in the Freshman} \\
\hline \multicolumn{5}{|l|}{Area of Undergraduate Engi-} \\
\hline \multicolumn{5}{|l|}{MANN, Clair V.} \\
\hline \multicolumn{5}{|l|}{See also Editorials} \\
\hline First Editor of the Journal & 1 & 1 & 36 & \\
\hline \multicolumn{5}{|l|}{The Birth of the Journal of} \\
\hline Engineering Drawing. & 2.0 & 3 & 56 & 20 \\
\hline \multicolumn{5}{|l|}{Excerpts from Address Given} \\
\hline at Rolla, Missouri. & 24 & 1 & 60 & 13 \\
\hline & 4 & 2 & 40 & 1 \\
\hline \multicolumn{5}{|l|}{A Partial Suggestive Anal-} \\
\hline ysis of Graphic Talent. & 8 & 1 & 44 & 18 \\
\hline \multicolumn{5}{|l|}{MARMO, E.J.} \\
\hline \multicolumn{5}{|l|}{A Graphical Solution for} \\
\hline \multicolumn{5}{|l|}{the Reduction of Noninter-} \\
\hline secting Nonparallel Forces
in Space................. & & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{A Graphical Solution for}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{the Reduction of Two Non-} \\
\hline \multicolumn{5}{|l|}{The Resultant of Couples} \\
\hline In Space & 14 & 2 & 50 & 15 \\
\hline \multicolumn{5}{|l|}{MARTIN, John R.} \\
\hline \multicolumn{5}{|l|}{Instruction in Graphics by} \\
\hline Closed-Circuit Television.. & 23 & 2 & 59 & 22 \\
\hline \multicolumn{5}{|l|}{MARVIN, F.F. and BAIRD, L.C.} \\
\hline \multicolumn{5}{|l|}{Mathematics and Graphics -} \\
\hline Getting the Point Across. & 36 & 3 & 72 & 17 \\
\hline \multicolumn{5}{|l|}{Mathematics and Graphics -} \\
\hline \multicolumn{5}{|l|}{Getting the Point Across -} \\
\hline Again?. . . . . . . . . & 37 & 2 & 73 & 2 \\
\hline \multicolumn{5}{|l|}{MASON, J.P. Jr., and EARP, U.F.} \\
\hline \multicolumn{5}{|l|}{An Aporoach to Instruction} \\
\hline In Design.... & 36 & 3 & 72 & 22 \\
\hline \multicolumn{5}{|l|}{MASSARD, F.J. and GERARDI,} \\
\hline Jasper & & & & \\
\hline Teaching Tolerances & 12 & 2 & 48 & 15 \\
\hline \multicolumn{5}{|l|}{MAZKEWITSCH, D.R.} \\
\hline \multicolumn{5}{|l|}{Construction of a Regular} \\
\hline Decagon and Pentagon & 21 & 2 & 57 & 44 \\
\hline Concerning Ellipses & 22 & 1 & 58 & 28 \\
\hline \multicolumn{5}{|l|}{A Graphical Computation of} \\
\hline \multicolumn{5}{|l|}{Hyperbolic and Circular} \\
\hline \multicolumn{5}{|l|}{Functions of a Complex} \\
\hline Argument. & 23 & 1 & 59 & 26 \\
\hline \multicolumn{5}{|l|}{To Find the Shortest Hor-} \\
\hline \multicolumn{5}{|l|}{izontal Connector Between} \\
\hline Two Skew Lines & 22 & 1 & 58 & 55 \\
\hline Nomogranh for xy & 26 & 3 & 62 & 24 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
McADAM, D.W. \\
Metric Conversion - The
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{McCAIN, G.L.} \\
\hline New SAE Dimensioning Standards. & 20 & 1 & 56 & 19 \\
\hline \multicolumn{5}{|l|}{McCLAIN, G.R.} \\
\hline \multicolumn{5}{|l|}{Mobil Computer Graphics} \\
\hline Laboratory & 37 & 1 & 73 & 43 \\
\hline Conclusion & 37 & 2 & 73 & 44 \\
\hline \multicolumn{5}{|l|}{McCULLY, H.M.} \\
\hline \multicolumn{5}{|l|}{Engineering Drawing Summer} \\
\hline \multicolumn{5}{|l|}{McCUTCHEN, H. and BOTKIN, K.E.} \\
\hline Trisection Remains A Problem & 30 & 1 & 66 & 7 \\
\hline \multicolumn{5}{|l|}{McDONALD, A.P.} \\
\hline \multicolumn{5}{|l|}{Course Development in Rela-} \\
\hline \multicolumn{5}{|l|}{tion to An Engineering Curriculum and Future Needs of} \\
\hline the Young Engineer & 22 & 2 & 58 & 49 \\
\hline \multicolumn{5}{|l|}{McFARLAND, F.} \\
\hline \multicolumn{5}{|l|}{Engineering Design As Re-} \\
\hline lated to Research. & 16 & 3 & 52 & 18 \\
\hline \multicolumn{5}{|l|}{McFARLAND, James D.} \\
\hline \multicolumn{5}{|l|}{Objections to the Project} \\
\hline \multicolumn{5}{|l|}{Method of Teaching Engi-
neering Drawing............} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Make Descriptive Geometry}} \\
\hline Practical................ & & & & \\
\hline \multicolumn{5}{|l|}{Personality Sketch of Pro-} \\
\hline fessor Elmer Rowe & 16 & 2 & 52 & 11 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Texas Welcomes You..........
McGuire, J.G.}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Axonometric Projections} \\
\hline Via Auxiliary Views...... & 8 & 1 & 44 & 16 \\
\hline \multicolumn{5}{|l|}{Relationship of Engineering} \\
\hline Drawing Courses... & 10 & 2 & 46 & 27 \\
\hline \multicolumn{5}{|l|}{The Theory of the Ellipse} \\
\hline Guide. & 13 & 3 & 49 & 6 \\
\hline \multicolumn{5}{|l|}{Cartography - A Graduate} \\
\hline Course in Graphics. & 17 & 1 & 53 & 7 \\
\hline \multicolumn{5}{|l|}{McGuire, J.G. and gallavay,} \\
\hline B.M. & & & & \\
\hline \multicolumn{5}{|l|}{Orthographic Projection} \\
\hline "Glass Box'. & 9 & 3 & 45 & 29 \\
\hline \multicolumn{5}{|l|}{McKINNEY, W.M. \({ }^{\text {a }}\).............. \({ }^{\text {a }}\)} \\
\hline \multicolumn{5}{|l|}{Graphical Solution by} \\
\hline Mapping. & 36 & 2 & 72 & 4 \\
\hline \multicolumn{5}{|l|}{McNEARY, Matthew} \\
\hline \multicolumn{5}{|l|}{The Transfer of Ideas to} \\
\hline Aid in Creative Thinking. & 17 & 3 & 53 & 34 \\
\hline \multicolumn{5}{|l|}{A Change in Name for the} \\
\hline \multicolumn{5}{|l|}{\multirow[b]{2}{*}{Creative Problems for Basjc 22}} \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{Engineering Drawing.....} & 20 & 1 & 56 & 48 \\
\hline & 25 & 1 & 61 & 12 \\
\hline From Your Chairman & 26 & 3 & 62 & 28 \\
\hline \multicolumn{5}{|l|}{MEIER, E.B.} \\
\hline Can Speed Be Taught? & 11 & 2 & 47 & 28 \\
\hline \multicolumn{5}{|l|}{MERRILL, A.M.} \\
\hline \multicolumn{5}{|l|}{Practical Application of} \\
\hline \multicolumn{5}{|l|}{Descriptive Geometry in} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{the Shipyard and Drafting}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Part I....................... 7 \% 14317} \\
\hline Part II & 7 & 2 & 43 & 12 \\
\hline \multicolumn{5}{|l|}{MESSENHEIMER, A.E.} \\
\hline \multicolumn{5}{|l|}{Graphics Program at Kansas} \\
\hline State University. & 24 & 1 & 60 & 25 \\
\hline \multicolumn{5}{|l|}{MESSINIDES, Harold C.} \\
\hline \multirow[t]{2}{*}{Introducing Design Considerations Into Drawing Courses} & & & & \\
\hline & 21 & 1 & 57 & 44 \\
\hline
\end{tabular}

\section*{M}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
MILLAR, A.V. \\
The Navy V-12 Program at Wisconsin.
\end{tabular} & 8 & 1 & 44 & 9 \\
\hline MILLAR, J.M. & 3 & 2 & 39 & 3 \\
\hline \begin{tabular}{l}
MILLER, S.W. \\
Programmed Invention
\end{tabular} & 37 & & 73 & 24 \\
\hline \begin{tabular}{l}
MING, F.W. \\
Tribute to Dr. Gardner Chace Anthony.
\end{tabular} & 2 & 1 & 38 & 15 \\
\hline \begin{tabular}{l}
MITCHELL, G.V. \\
The Pi Scale
\end{tabular} & 11 & & 47 & 20 \\
\hline \begin{tabular}{l}
MOCHEL, E.V. \\
Computer Produced Nomographs
\end{tabular} & 33 & & 69 & 37 \\
\hline An Elective Course In Computer Graphics. & 34 & 3 & 70 & 54 \\
\hline Variations of Projection Systems Using a Computer & 36 & & 72 & 44 \\
\hline Standards in Computer Graphics. & 37 & 2 & 73 & 18 \\
\hline \begin{tabular}{l}
MOLINER, P.R. \\
An Easy Graphical Method For Finding the Resultant of Any Two Forces.
\end{tabular} & 33 & 1 & 69 & 52 \\
\hline \begin{tabular}{l}
MONSON, E.L. \\
Drafting - The Key to Engineering.
\end{tabular} & 18 & 1 & 54 & 30 \\
\hline \begin{tabular}{l}
MULLINS, B.F.K. \\
Keeping Personnel Records of Drawing Students........
\end{tabular} & 6 & 3 & 42 & 12 \\
\hline \begin{tabular}{l}
MOSILLO, F.A. \\
Introduction to Engineering \\
and Design.
\end{tabular} & 34 & 3 & 70 & 41 \\
\hline Freshman Graphics Involving The Computer. & 37 & 2 & 73 & 30 \\
\hline The Implementation of TRIDM at Chicago Circle.......... & 38 & 1 & 74 & 29 \\
\hline The Library as a Design Project. & 40 & 2 & 76 & 24 \\
\hline What Is The Purpose of Design? & 42 & 3 & 78 & 37 \\
\hline IOSILLO, F.A. and WOLF, B.E. Motivation by Computer Graphics. & 40 & 1 & 76 & 37 \\
\hline
\end{tabular}

\section*{N}
\begin{tabular}{|c|c|c|c|c|}
\hline NABORS, Tracy B. On-the-Job Training in Drafting and Design. & 23 & 1 & 59 & 11 \\
\hline \multicolumn{5}{|l|}{NARCHI, R.K.} \\
\hline \multicolumn{5}{|l|}{4-Dimensional Descriptive} \\
\hline Geometry Solution of Linear & & & & \\
\hline Systems. & 34 & 1 & 70 & 44 \\
\hline \multicolumn{5}{|l|}{NECHI, A.J.} \\
\hline \multicolumn{5}{|l|}{Skew-1ine Problems For Con-} \\
\hline and Angle.............. & 34 & 2 & 70 & 35 \\
\hline \multicolumn{5}{|l|}{NELSON, Howard C.} \\
\hline A Light Table & 21 & 3 & 57 & 47 \\
\hline \multicolumn{5}{|l|}{NIAYESH, H.} \\
\hline \multicolumn{5}{|l|}{Another Method to Solve} \\
\hline Dihedral Angles. & 35 & 2 & 71 & 11 \\
\hline \multicolumn{5}{|l|}{Critical Review of Pictor-} \\
\hline \multicolumn{5}{|l|}{ial Drawing in U.S. Graph-} \\
\hline ical Literature & 41 & 1 & 77 & 25 \\
\hline \multicolumn{5}{|l|}{NICHOLS, M.C.} \\
\hline \multicolumn{5}{|l|}{Engineering Drawing As Seen} \\
\hline By a Consulting Engineer. & 14 & 3 & 50 & 23 \\
\hline \multicolumn{5}{|l|}{NOREN, O.B. and GERARDI, J.} \\
\hline Teaching Tolerances & 11 & 3 & 47 & 20 \\
\hline \multicolumn{5}{|l|}{NORTHRUP, Ralph T.} \\
\hline \multicolumn{5}{|l|}{A Mathematical Method for the Construction of an} \\
\hline E11ipse. & 29 & 7 & 65 & 42 \\
\hline \multicolumn{5}{|l|}{The ASEE Engineering Draw-} \\
\hline \multicolumn{5}{|l|}{ing Distinguished Service} \\
\hline \multicolumn{5}{|l|}{Award to Randolph Philip} \\
\hline Hoelscher. & 18 & 3 & 54 & 19 \\
\hline \multicolumn{5}{|l|}{The Division of Engineer-} \\
\hline \multicolumn{5}{|l|}{ing Drawing Passes the} \\
\hline Quarter Century Mark & 18 & 3 & 54 & 7 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Dimensioning Drawings......
Response to Distinguished}} \\
\hline & & & & \\
\hline Service Award. & 29 & 3 & 65 & 15 \\
\hline \multicolumn{5}{|l|}{Value of Production Illus-} \\
\hline \multicolumn{5}{|l|}{NYPAN, L.J.} \\
\hline Graphics in the High School & 31 & 1 & 67 & 15 \\
\hline \multicolumn{5}{|l|}{NYSTROM, D.C. and GLAZENER,E.R.} \\
\hline \multicolumn{5}{|l|}{Animated Film Teaching Versus Lecture -Demonstration} \\
\hline Method...................... & 34 & 1 & 70 & 19 \\
\hline \multicolumn{5}{|l|}{NYSTROM, E.J} \\
\hline Articulated Hyperboloids & & & & \\
\hline and Paraboloids. & 12 & 1 & 48 & 26 \\
\hline Axonometric Pictures & 10 & 2 & 46 & 12 \\
\hline
\end{tabular}

\section*{0}
\begin{tabular}{|c|c|c|c|c|}
\hline O'LEARY, J.P.,Jr. Exploitation of Computer Graphics Capabilities. & 36 & 2 & 72 & 14 \\
\hline \multicolumn{5}{|l|}{OLIVER, J.P.} \\
\hline Descriptive Geometry and & & & & \\
\hline Design Applications. & 29 & 3 & 65 & 17 \\
\hline \multicolumn{5}{|l|}{Descriptive Geometry - Comparing Traces and Direct} \\
\hline Method. . . . . . . . . . . . . . . . . . . & 12 & 1 & 48 & 19 \\
\hline \multicolumn{5}{|l|}{Oblique as a Member of the} \\
\hline Pictorial Family. & 14 & 2 & 50 & 35 \\
\hline \multicolumn{5}{|l|}{A Solution for Three Un-} \\
\hline known Forces & 30 & 1 & 66 & 36 \\
\hline \multicolumn{5}{|l|}{Perspective by Proportion-} \\
\hline \multicolumn{5}{|l|}{OPPENHEIMER, Frank} \\
\hline \multicolumn{5}{|l|}{The German Drawing Instrument Industry - History} \\
\hline ground & 20 & 3 & 56 & 29 \\
\hline Special Recognition Award & 39 & 1 & 75 & 47 \\
\hline \multicolumn{5}{|l|}{Oppenheimer "Presentation} \\
\hline \multicolumn{5}{|l|}{Award" awarded to Oppen-} \\
\hline \multicolumn{5}{|l|}{ORBECK, Martin J} \\
\hline Concerning Ellipses & 21 & 1 & 57 & 37 \\
\hline \multicolumn{5}{|l|}{ORTH, H.D.} \\
\hline \multicolumn{5}{|l|}{Establishing and Maintain-} \\
\hline \multicolumn{5}{|l|}{ing Standards of Excell-} \\
\hline ance in Drawing & 5 & 1 & 41 & 7 \\
\hline The Isometric Ellipse & 8 & 1 & 44 & 5 \\
\hline Problem Solution. & 13 & 1 & 49 & 9 \\
\hline \multicolumn{5}{|l|}{OTIS, J.C.} \\
\hline \multicolumn{5}{|l|}{An Application of Computer} \\
\hline Aided Design to Electrocardiogranhy & 35 & 1 & 71 & 35 \\
\hline
\end{tabular}
    Exploitation of Computer
    Graphics Capabilities...... 3627214
    Descriptive Geometry and
    Design Applications........ \(29 \quad 3 \quad 6517\)
    Descriptive Geometry - Com-
    \(\begin{array}{llllll}M & 12 & 19\end{array}\)
    Oblique as a Member of the \(\begin{array}{lllll} \\ \text { Pictorial Family........ } 14 & 2 & 50 & 35\end{array}\)
    \(\begin{array}{lllll}\text { A Solution for Three Un- } \\ \text { known Forces................ } & 30 & 1 & 66 & 36\end{array}\)
    \(\begin{array}{llllll}\text { Perspective by Proportion- } \\ \text { al Scales................... } & 31 & 2 & 67 & 16\end{array}\)
OPPENHEIMER, Frank
    The German Drawing Instru-
    ment Industry - History
    \(\begin{array}{llll}\text { and Sociological Back- } \\ \text { ground............................. } 20 & 30 & 56 & 29\end{array}\)
    Special Recognition Award.. 39117547
    Oppenheimer "Presentation
    Award" awarded to Oppen-
    heimer!............................ \(39 \quad 1 \quad 7547\)
    Concerning E11ipses........ \(21 \quad 1 \quad 5737\)
ORTH, H.D.
    Establishing and Maintain
    ing Standards of Excell- \(\quad 5 \quad 1 \quad 417\)
    The Isometric Ellipse...... \(\quad 8 \quad 1 \quad 44 \quad 15\)
An Application of Computer
    Aided Design to Electro-
    cardiograṇhy................. 3513135

\section*{P}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PAFFENBARGER, Ra1ph S.} \\
\hline Conclusions I Have Drawn.. & 20 & 3 & 56 & 34 \\
\hline \multicolumn{5}{|l|}{Status of the ASA Y-1/4} \\
\hline \multicolumn{5}{|l|}{Drawing and Drafting Prac-
tice Standards............ 20.150} \\
\hline \multicolumn{5}{|l|}{Committee On Advanced} \\
\hline Credits Announcement & 12 & 1 & 48 & 28 \\
\hline \multicolumn{5}{|l|}{Preparation of Quizzes and} \\
\hline Examinations. & 13 & 1 & 49 & 12 \\
\hline \multicolumn{5}{|l|}{Unit Tests in Engineering} \\
\hline Drawing Ready March 1,1949 & 13 & 1 & 49 & 33 \\
\hline \multicolumn{5}{|l|}{Course Development in Engineering Drawing To Meet the} \\
\hline \multicolumn{5}{|l|}{Needs of Present Day Engi-
neering Education.........
P} \\
\hline \multicolumn{5}{|l|}{Personality Sketch of Prof.} \\
\hline Charles J. Vierck.. & 18 & 3 & 54 & 28 \\
\hline \multicolumn{5}{|l|}{History of the Engineering} \\
\hline \multicolumn{5}{|l|}{Design Graphics Division} \\
\hline Part 1 of Six. & 40 & 3 & 76 & 28 \\
\hline Part II & 41 & 1 & 77 & 30 \\
\hline Part III & 41 & 2 & 77 & 30 \\
\hline Part IV & 41 & 3 & 77 & 42 \\
\hline \multicolumn{5}{|l|}{PANEL ON ENGINEERING EDUCA-} \\
\hline \multicolumn{5}{|l|}{TION EXCERPTS FROM THE} \\
\hline \multicolumn{5}{|l|}{REPORT} \\
\hline \multicolumn{5}{|l|}{Assessment of the Goals of} \\
\hline \multicolumn{5}{|l|}{Engineering Education in the} \\
\hline United States.............. & 31 & 1 & 67 & 29 \\
\hline \multicolumn{5}{|l|}{PANLENER, R.J., et. al.} \\
\hline Creative Expression in Engineering. & 24 & 3 & 60 & 19 \\
\hline \multicolumn{5}{|l|}{PAOUET, V.H.} \\
\hline \multicolumn{5}{|l|}{To Circumscribe a Pentagon} \\
\hline About a Circle. & 20 & 3 & 56 & 36 \\
\hline Axonometric Projection & 13 & 1 & 49 & 24 \\
\hline \multicolumn{5}{|l|}{PARE', E.G.} \\
\hline A Drawing Course for Science & & & & \\
\hline Majors............ & 20 & 1 & 56 & 57 \\
\hline \multicolumn{5}{|l|}{Problems Confronting the} \\
\hline \multicolumn{5}{|l|}{Teacher of Engineering} \\
\hline Drawing...... & 22 & 1 & 58 & 20 \\
\hline \multicolumn{5}{|l|}{Some Comments On The Goals} \\
\hline Report & 30 & 1 & 66 & 26 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Pictorial Shade and Shadow. \(37 \quad 1 \quad 7314\) Distinguished Service Award,}} \\
\hline & & & & \\
\hline 1976.................... . & 40 & 3 & 76 & 8 \\
\hline Response & 40 & 3 & 76 & 9 \\
\hline \multicolumn{5}{|l|}{PARE', R.C.} \\
\hline \multicolumn{5}{|l|}{A Modified Self-paced Course} \\
\hline in Descriptive Geometry. & 37 & 2 & 73 & 14 \\
\hline \multicolumn{5}{|l|}{PARKINSON, R.W.} \\
\hline Graphics for Nonengineers.. & 18 & 2 & 54 & 35 \\
\hline \multicolumn{5}{|l|}{PAUL, R.L. and SKAMSER, H.P.} \\
\hline \multicolumn{5}{|l|}{A Brief Survey of Granhic} \\
\hline \multicolumn{5}{|l|}{Reproduction Processes} \\
\hline Part I. & 19 & 1 & 55 & 32 \\
\hline Part II & 19 & 2 & 55 & 23 \\
\hline \multicolumn{5}{|l|}{PAULSEN, F} \\
\hline \multicolumn{5}{|l|}{Beauty and the Center of} \\
\hline Gravity. & 18 & 2 & 54 & 15 \\
\hline \multicolumn{5}{|l|}{PEARSON, R.W.} \\
\hline Drafting Problems in Industry and Some Solutions..... & 20 & 2 & 56 & 21 \\
\hline \multicolumn{5}{|l|}{PEARSON, Wilbur} \\
\hline \multirow[t]{2}{*}{Computer Graphics at Miss-
issippi State University..} & & & & \\
\hline & 38 & 3 & 74 & 7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline PELAN, Bryon J. Coriolis' Acceleration Clarified Through Graphics. & 29 & 1 & 65 & \\
\hline PHELPS, G.0. & & & & \\
\hline The University of Florida Welcomes You. & 17 & 2 & 53 & 18 \\
\hline PIDGEON, C.W. & & & & \\
\hline Engineering-Computer & 39 & 1 & 75 & 29 \\
\hline POCOCK, K.A. & 39 & 1 & 75 & 29 \\
\hline Auxiliary Projections: & 34 & 3 & 70 & 46 \\
\hline PORSCH, J. Howard & & & & \\
\hline At the Fork in the Road? & & & & \\
\hline At the End of the Road? & & & & \\
\hline Where Are Ve?. & 29 & 2. & 65 & 5 \\
\hline Forming Tool Calculations & & & & \\
\hline Graphic and Algebraic & & & & \\
\hline Part I. & 17 & 2 & 53 & 30 \\
\hline Part II & 17 & 3 & 53 & 30 \\
\hline Question? (Officers Page) & 29 & 1 & 65 & \\
\hline Some Comments on Obtaining & & & & \\
\hline A Quality Set of Drawing & & & & \\
\hline Instruments & 14 & 3 & 50 & 16 \\
\hline PORTER, F. & & & & \\
\hline Solve This One. & 12 & 2 & 48 & 34 \\
\hline POTTER, O.W. & & & & \\
\hline A Letter from 0.W. Potter. & 23 & 3 & 59 & 15 \\
\hline Advantages of Supervised & & & & \\
\hline Drawing Periods. & 4 & 2 & 40 & 11 \\
\hline American Society for Engi- & & & & \\
\hline neering Education, June 1947 & 11 & 3 & 47 & 12 \\
\hline Division Activities & 14 & 2 & 50 & 30 \\
\hline Looking Ahead & 14 & 1 & 50 & 5 \\
\hline Mid-Year Meeting, January & & & & \\
\hline 1949. & 13 & 2 & 49 & 20 \\
\hline Production Illustration & 8 & 3 & 44 & 22. \\
\hline Report of the Meeting of & & & & \\
\hline Engineering Drawing Division & 12 & 3 & 48 & \\
\hline Report of the Meeting of & & & & \\
\hline Engineering Drawing Division & 13 & 3 & 49 & \\
\hline Graphics is Engineering & & & & \\
\hline Practice. & 19 & 2 & 55 & 33 \\
\hline POZNIAK, T.D. & & & & \\
\hline Descriptive Geometry: A & & & & \\
\hline Self-dependent Spatial & & & & \\
\hline Science & 30 & 3 & 66 & 21 \\
\hline Descriptive Geometry in & & & & \\
\hline the Space Age. & 28 & 3 & 64 & \\
\hline POZNIAK vs. LINDGREN & & & & \\
\hline and BORECKY & 31 & 2 & 67 & \\
\hline PRAY, R. Ford & & & & \\
\hline An Evaluation of Paper Presentations at the 1956 & & & & \\
\hline Summer School. & 20 & 1 & 56 & 52 \\
\hline PUDERBAUGH, Homer L & & & & \\
\hline Projections for a Geodesic & & & & \\
\hline Sphere & 27 & 1 & 63 & 28 \\
\hline PUTNAM, R.C & & & & \\
\hline New Lighting Developments & & & & \\
\hline Drafting Rooms. & 10 & 3 & 46 & 22 \\
\hline
\end{tabular}

\section*{R}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
ACKWAY, J.S. \\
Rectification of the CirCumference of a Circle...
\end{tabular} & 12 & 3 & 48 & 26 \\
\hline RACZKOWSKI, George & & & & \\
\hline Applications of Computer & & & & \\
\hline Graphics of Mechanisms to Design. & 37 & 2 & 73 & 21 \\
\hline Application of Graphics to & & & & \\
\hline Mechanical Design. & 38 & 2 & 74 & 19 \\
\hline RADEMACHER, Richard J & & & & \\
\hline Sketched Exploded Views As & & & & \\
\hline A Product Engineer's Tool. & 29 & 3 & 65 & 7 \\
\hline RADFORD, S.S. & & & & \\
\hline Appreciation of Engineering & & & & \\
\hline Drawing as a Basic Academic & & & & \\
\hline Study. & 14 & 3 & 50 & 10 \\
\hline The Checking and Grading of & & & & \\
\hline Mechanical Drawings & 5 & 3 & 41 & 11 \\
\hline RAGAN, T.W. & & & & \\
\hline Standards as a Tool for the Engineering Graduate. & 15 & 1 & 51 & 20 \\
\hline RANDOLPH, A.F. & & & & \\
\hline Plastics for Drawing Instruments & 12 & 3 & 48 & 12 \\
\hline RATLEDGE, E.T. & & & & \\
\hline Canned Case Studies for & & & & \\
\hline Design Courses........ & 35 & 3 & 71 & 34 \\
\hline Non-engineers Need Graphics & & & & \\
\hline Too & 39 & 2 & 75 & 9 \\
\hline RAU, Arthur H. & & & & \\
\hline Industrial Drafting Looks at Industrial Education.. & 22 & 1 & 58 & 51 \\
\hline RAUCH, R.T. & & & & \\
\hline The Trigonometric Solution & & & & \\
\hline to the Dihedral Angle Problem of Rectangular Hopners & 35 & 1 & 71 & 24 \\
\hline REINHARD, P.M. & & & & \\
\hline Engineering Graphics Course & & & & \\
\hline Content Development Study.. & 25 & 3 & 61 & 1 \\
\hline REINHARD, P.M.,et al. & & & & \\
\hline Engineering Graphics Course & & & & \\
\hline Content Development Study.. & 29 & 3 & 65 & 13 \\
\hline REPKO, Alan & & & & \\
\hline Descriptive Geometry and & & & & \\
\hline Chemistry II & 27 & 2 & 63 & 16 \\
\hline REYNOLDS, R.W. & & & & \\
\hline Some Methods of Shading & & & & \\
\hline Engineering Drawings for & & & & \\
\hline Publication.. & 22 & 2 & 58 & 23 \\
\hline REYNOLDS, R.W. and KEECH, R.A. & & & & \\
\hline Graphics: Indispensible in & & & & \\
\hline Machine Design. & 32 & 2 & 68 & 36 \\
\hline REYNOLDS, T.S. & & & & \\
\hline Gaspard Monge and the Origins of Descriptive Geometry.... & 40 & 2 & 76 & 14 \\
\hline REYNOLDS, Wallace & & & & \\
\hline Simplified Drafting as Pro- & & & & \\
\hline posed by the Bureau of Ships & 21 & 1 & 57 & 38 \\
\hline A Survey of Utilization of & & & & \\
\hline Training in Engineering & & & & \\
\hline Drawing by Engineering Graduates Employed in West Coast & & & & \\
\hline Industries.................. & 27 & 2 & 63 & 20 \\
\hline RHULE, W.A. & & & & \\
\hline A Word About Unit Tests in & & & & \\
\hline Engineering Drawing. & 17 & 2. & 53 & 29 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
RICHARDSON, H.D. and SEEGER, J.C. \\
Lucite Models for Student Use in Classrooms.
\end{tabular} & 13 & 1 & 49 & 16 \\
\hline RINDONE, C.P. & & & & \\
\hline \begin{tabular}{l}
A New Engineering Discipline \\
- Technical Analysis and
\end{tabular} & & & & \\
\hline Definition.................. & 26 & 1 & 62 & 12 \\
\hline RISING, James S & & & & \\
\hline Course Content in Basic & & & & \\
\hline Engineering Graphics & 22 & 3 & 58 & 32 \\
\hline Integration of Engineering & & & & \\
\hline Drawing and Descriptive & & & & \\
\hline Geometry. & 12 & 3 & 48 & 16 \\
\hline RISING, Justus & & & & \\
\hline Twenty Years After & 20 & 3 & 56 & 24 \\
\hline Adventures in Lettering & & & & \\
\hline Part I. & 5 & 1 & 41 & 2 \\
\hline Part II & 5 & 2 & 41 & 2 \\
\hline Ideal Engineering Drawing & & & & \\
\hline Department.. & May & & 37 & 1 \\
\hline Pre-Service Training in & & & & \\
\hline Engineering Drawing... & 7 & 3 & 43 & 0 \\
\hline Visual Aids for Engineering & & & & \\
\hline Drawing. & 11 & 1 & 47 & 8 \\
\hline Visual Education. & 3 & 2 & 39 & 5 \\
\hline RITTER, R.L.,et. al. & & & & \\
\hline Creative Expression in & & & & \\
\hline Engineering & 24 & 2 & 60 & 19 \\
\hline ROBERTS, J.A. & & & & \\
\hline Computer-aided Pipe Sketch- & 37 & 2 & 73 & 45 \\
\hline ROGERS, W. B. & & & & \\
\hline Descriptive Geometry & 28 & 3 & 64 & 16 \\
\hline The 1956 Engineering Draw- & & & & \\
\hline ing Summer School - Some & & & & \\
\hline Reflections and Recommendations. & 20 & 1 & 56 & 50 \\
\hline Cultural Clods or Illiter- & & & & \\
\hline ate Technicians; Can We Mix the Two? & 30 & 1 & 66 & 6 \\
\hline The Objective Evaluation of & & & & \\
\hline a Design Problem. & 31 & 4 & 67 & 30 \\
\hline Report: Self-Study & & & & \\
\hline Committee. & 35 & 3 & 71 & 16 \\
\hline Time for a Change? & 36 & 1 & 72 & 27 \\
\hline Backward Glances and Forward & & & & \\
\hline Projections & 37 & 2 & 73 & 49 \\
\hline ROMEO, Al & & & & \\
\hline See Also Editorials & & & & \\
\hline A Solution to a Problem in & & & & \\
\hline Vol.29, No.2, 1965, pg 40... & 30 & 2 & 66 & 40 \\
\hline Circular Features Involving & & & & \\
\hline Axonometric Projection... & 31 & 2 & 67 & 13 \\
\hline A Direct Method for Axono- & & & & \\
\hline metric Projection... & 31 & 1 & 67 & 27 \\
\hline Descriptive Geometry for & & & & \\
\hline Prospective Technology & & & & \\
\hline Teachers. & 33 & 2 & 69 & 56 \\
\hline Another Geometric Solution & & & & \\
\hline for Problems Involving & & & & \\
\hline Specified Angles & 34 & 3 & 70 & 37 \\
\hline ROSS, G.L. & & & & \\
\hline Computer Graphics & 32 & 1 & 68 & 38 \\
\hline ROTENBERG, Abram & & & & \\
\hline How Many Views? & 35 & 3 & 71 & 45 \\
\hline Visual Illusion or Ambig- & & & & \\
\hline uous Drawing........ & 36 & 1 & 72 & 32 \\
\hline A Criterion of Correctness & & & & \\
\hline of Single View Graphical & & & & \\
\hline Representation. & 36 & 2 & 72 & 46 \\
\hline Homology vs. Monge Method. & 37 & 2 & 73 & 42 \\
\hline Representation of Curved & & & & \\
\hline Surfaces by Computer & & & & \\
\hline & 41 & 2 & 77 & 20 \\
\hline
\end{tabular}

\section*{R}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{ROTENBERG, Abram and SLABY, S.M.} \\
\hline \multicolumn{5}{|l|}{ROWE, C.E.} \\
\hline \multicolumn{5}{|l|}{Some Applications of Descrip-
tive Geometry to Solar} \\
\hline Astronomy. & 26 & 2 & 62 & 28 \\
\hline \multicolumn{5}{|l|}{Basic Models as an Effect-} \\
\hline \multicolumn{5}{|l|}{ive Aid in Teaching Descri-} \\
\hline \multicolumn{5}{|l|}{Descriptive Geometry and} \\
\hline Optical Effects & 15 & 1 & 51 & \\
\hline \multicolumn{5}{|l|}{Methods and Teaching of} \\
\hline Descriptive Geometry. & 2 & 1 & 38 & \\
\hline \multicolumn{5}{|l|}{Progress in the Teaching} \\
\hline of Descriptive Geometry. & 4 & 1 & 40 & 13 \\
\hline \multicolumn{5}{|l|}{RULE, John T.} \\
\hline \multicolumn{5}{|l|}{Concept of the ''Graphical} \\
\hline Mind"'......... & 29 & 3 & 65 & 32 \\
\hline \multicolumn{5}{|l|}{Problem Dealing With Pro-} \\
\hline jection of Angles........ & 22 & 2 & 58 & 53 \\
\hline \multicolumn{5}{|l|}{The Development and Use of} \\
\hline \multicolumn{5}{|l|}{Stereographs for Teaching} \\
\hline Descriptive Geometry. & 8 & 3 & 44 & 18 \\
\hline Graphics Re-Examined & 11 & 1 & 47 & 5 \\
\hline \multicolumn{5}{|l|}{Notes on the Projection of} \\
\hline a Circle. & 16 & 1 & 52 & 27 \\
\hline Pictorial Drawing & 13 & 1 & 49 & 27 \\
\hline Problem Solution & 11 & 3 & 47 & 16 \\
\hline \multicolumn{5}{|l|}{Joe Doakes Finds the Cen-} \\
\hline tral View. ............ & 18 & 3 & 54 & 32 \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{Opportunities and Responsibilities of Graphics in an}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Engineering Educational} \\
\hline Program. & 17 & 2 & 53 & 7 \\
\hline \multicolumn{5}{|l|}{Problem: Fido's Chew-Prob-} \\
\hline \(1 \mathrm{em}\). & 17 & 3 & 53 & 39 \\
\hline Trisection Flaw & 29 & 2 & 65 & 54 \\
\hline \multicolumn{5}{|l|}{Personality Sketch,} \\
\hline D.P. Adams... & 19 & 2 & 55 & 21 \\
\hline \multicolumn{5}{|l|}{RULE, J.T. and BENNETT, T.R.} \\
\hline Perimeter of an Ellipse. & 34 & 2 & 70 & 16 \\
\hline \multicolumn{5}{|l|}{RULE, J.T. and COYNE, A.L.} \\
\hline \multicolumn{5}{|l|}{Summer Course in Graphics} \\
\hline for High School Teachers. & 4 & 2 & 40 & 12 \\
\hline \multicolumn{5}{|l|}{RULE, W.P.} \\
\hline \multicolumn{5}{|l|}{Curriculum Planning for a} \\
\hline Large Co-op University. & 31 & 4 & 67 & 16 \\
\hline \multicolumn{5}{|l|}{RUSS, John M.} \\
\hline Faulty Pen. & 20 & 3 & 56 & 27 \\
\hline Twenty Years Later & 20 & 3 & 56 & 23 \\
\hline \multicolumn{5}{|l|}{Drawing Division Desires} \\
\hline Copies of Old Drawings & 3 & 2 & 39 & 7 \\
\hline Examination Problems & May & & 37 & 6 \\
\hline Hear Ye! Hear Ye! & 12 & 2 & 48 & 20 \\
\hline \multicolumn{5}{|l|}{Iowa Produces Another Study} \\
\hline Sheet. & 12 & 2 & 48 & 22 \\
\hline \multicolumn{5}{|l|}{Personality Sketch of Prof.} \\
\hline Frederic G. Higbee. & 16 & 1 & 52 & 7 \\
\hline \multicolumn{5}{|l|}{Report of the Publication} \\
\hline Committee...... & May & & 37 & 21 \\
\hline Size Description & May & & 37 & 9 \\
\hline \multicolumn{5}{|l|}{Some Overlooked Values of} \\
\hline Drawing & 1 & 3 & 37 & 8 \\
\hline The University of Iowa Remembers the Forgotten Man. & 6 & 2 & 42 & 16 \\
\hline
\end{tabular}

\section*{S}
\begin{tabular}{|c|c|c|c|c|}
\hline SAHAG, L.M. & & & & \\
\hline Relation Between Engineering and Machine Design. & 20 & 2 & 56 & 15 \\
\hline Engineering Projection Ap- & & & & \\
\hline plied to the Solutions of & & & & \\
\hline Forces in Space. & 8 & 2 & 44 & 2 \\
\hline SAMONOV, C. & & & & \\
\hline Determination of Dihedral & & & & \\
\hline Angles of Rectangular & & & & \\
\hline Hoppers. & 33 & 2 & 69 & 48 \\
\hline Determination of Normal & & & & \\
\hline Stresses in Unsymmetrical & & & & \\
\hline Bending by Graphical & & & & \\
\hline Methods. & 33 & 3 & 69 & 45 \\
\hline See also "Correction" & & & & \\
\hline R.T. Rauch & 34 & 2 & 70 & 18 \\
\hline SANDERS, C. Gordon & & & & \\
\hline Utilization of Teaching & & & & \\
\hline Media. & 37 & 3 & 73 & 16 \\
\hline Distinguished Service Award & 42 & 3 & 78 & 20 \\
\hline SANDIFER, D.A.N. & & & & \\
\hline Standard Drawing Office & & & & \\
\hline Practice in England.... & 9 & 3 & 45 & 0 \\
\hline SANDLIN, J.R. and VAIL, J.B. & & & & \\
\hline What a Scientific Computer & & & & \\
\hline Center Can Do for the & & & & \\
\hline Engineer. & 33 & 1 & 69 & 42 \\
\hline SANDS, C.T. and HALL, C.E. & & & & \\
\hline Survey: Which Degree- & & & & \\
\hline Departments Include a & & & & \\
\hline Graphics Requirement? & 39 & 3 & 75 & 10 \\
\hline SARCHET, T.C. & & & & \\
\hline Slide Rule Course on TV: & & & & \\
\hline Gains Clarity and Flex- & & & & \\
\hline ibility............... & 37 & 2 & 73 & 33 \\
\hline SARRAF, Mohammad and JUR, T.A. & & & & \\
\hline A Visual Aid for Instruct- & & & & \\
\hline ion in Orthographic Projection. & 42 & 1 & 78 & 9 \\
\hline SARVER, J.H. & & & & \\
\hline Automation of Design with Modern Techniques. & 30 & 3 & 66 & 11 \\
\hline SAUVAGEAU, Marc & & & & \\
\hline 3-D Simplified - The Axo- & & & & \\
\hline Graph. . . . . . . . . . . . . . . . & 41 & 2 & 77 & 17 \\
\hline SAVAGE, H.W. & & & & \\
\hline Clutch Fork Jig Assembly. & 4 & 3 & 40 & 13 \\
\hline SAVAGE, H.W. and ZOZZORA, F. & & & & \\
\hline Combined Bearing Cap, & & & & \\
\hline Speedometer Gear and Worm & & & & \\
\hline Housing-an Advanced Draw- & & & & \\
\hline ing Problem. . . . . . . . . . . . & 7 & 3 & 43 & 14 \\
\hline SAYRE, C.J. & & & & \\
\hline A Transparency for Less & & & & \\
\hline Than Two Cents? It's & & & & \\
\hline Possible! & 42 & 2 & 78 & 22 \\
\hline SCHAFER, D.L. and STARK, L.E. & & & & \\
\hline Predetermined Ellipse Guide & & & & \\
\hline Angles for Axonometric Projection & 38 & 3 & 74 & 11 \\
\hline SCHAMERHORN, E.C. & & & & \\
\hline Opinions of Educators and & & & & \\
\hline Engineers on the Importance of Engineering Graph- & & & & \\
\hline ics Topics................. & 30 & 1 & 66 & 17 \\
\hline SCHICK, L.E. & & & & \\
\hline Military Graphics & 13 & 2 & 49 & 11 \\
\hline West Point - U.S. Military & & & & \\
\hline Academy . & 15 & 3 & 51 & 9 \\
\hline
\end{tabular}

SAHAG, L.M.
Relation Between Engineer-
ing and Machine Design....
plied to the Solutions
Forces in Space
Determination of Dihedral
Angles of Rectangular
Determination of Normai
Stresses in Unsymmetrical
Bending by Graphical
See also "Correction"
R.T. Rauch................... \(34 \quad 2 \quad 7018\)

ANDERS, C. Gordon
Utilization of Teaching
Distinguished Service Award \(\begin{array}{lllll}42 & 3 & 78 & 20\end{array}\)
SANDIFER, D.A.N.
Standard Drawing Office
Practice in England........ 9 45
ANDLIN, J.R. and VAIL, J.B
What a Scientific Computer
Center Can Do for the
SANDS, C.T. and HALL, C.E.
Survey: Which Degree-
Departments Include a
RCHET, T.C.
Slide Rule Course on TV:
Gains Clarity and Flex-
RRAF, Mohammad and JUR, T.A.
A Visual Aid for Instruct-
ion in Orthographic Projec-
tion.
Automation of Design with
Modern Techniques
3-D Simplified - The Axo-
Graph
VAGE, H.W.
Clutch Fork Jig Assembly..
Combined Bearing Cap
Speedometer Gear and Norm
Housing-an Advanced Draw-
ing Problem
A Transparency for Less
Than Two Cents? It's
Possible!.................... 42 2 7822
SCHAFER, D.L. and STARK, L.E.
dermined Ellipse
Angles for Axonometric Pro-
HAMERHORN, E.C.
Opinions of Educators and
Engineers on the Import-
ance of Engineering Graph-
ics Topics................... \(30 \quad 1 \quad 6617\)
Military Graphics...i....... \(13 \quad 2 \quad 49\)
West Point - U.S. Military
Academy...................... 153151

SCHIENBEIN, L.A.
\begin{tabular}{|c|c|c|c|c|}
\hline Experience with Design Problems. & 39 & 2 & 75 & 4.5 \\
\hline \multicolumn{5}{|l|}{SCHMELZER, R.V.} \\
\hline Welcome to R.P.I & 13 & 2 & 49 & 5 \\
\hline \multicolumn{5}{|l|}{SEEGER, J.C. and RICHARDSON, H.D.} \\
\hline Lucite Models for Student Use in Classrooms. & 13 & 1 & 49 & 16 \\
\hline \multicolumn{5}{|l|}{SENGER, W.L.} \\
\hline Present Day Drafting Requirements of Industry. & & 1 & 42 & \\
\hline \multicolumn{5}{|l|}{SENSER, Robert A.} \\
\hline \multicolumn{5}{|l|}{The Function of Graphice and} \\
\hline Illustrative Languages in & & & & \\
\hline the Communication Process. & 25 & 2 & 61 & 16 \\
\hline SHAFFER, Robert and BAER, C.J. A Comparative Study of & & & & \\
\hline Metric and Unified-U.S. & & & & \\
\hline & 33 & 1 & 69 & \\
\hline
\end{tabular}

SHAPIRA, Ruth and ZAMONSKY, Uzi.
A New Solution Method for
Cylinder and Cone Problems. 32306855
SHAPIRO, S.E.
Report of Bibliography Com-
mittee........................
Industrial Illustration As
It Relates to the Students
and Professional Engineer.. \(14 \quad 2 \quad 50 \quad 16\)
SHERMAN, R.M.
Drafting Problems Encount-
ered in Structural Steel
Fabrication.................. 15218
SHERROD, P.W. and BEIL, R.J.
One Year with the Graphics
System- and Educational
Experience................... 413247
SHERWOOD, R.S.
A Positive Program for
Engineering Drawing......... \(18 \quad 3 \quad 54 \quad 12\)
SHICK, Wayne L.
See also Editorials
Axonometry................... \(23 \quad 3 \quad 59 \quad 13\)
\begin{tabular}{l}
\begin{tabular}{l} 
Communication and Work..... \\
The Function of Drawing:
\end{tabular} \\
\begin{tabular}{l} 
The
\end{tabular} \\
\hline
\end{tabular}

Creativity................... \(20 \quad 3 \quad 5646\)
The Engineer: Leader of
Men (Editoria1).............. \(23 \quad 1 \quad 59 \quad 10\)
Graphics Requirement in
High School and College
(Editorial)................... \(25 \quad 1 \quad 618\)
Manual Skills in the Pro-
fessional Curriculum
(Editorial).................... \(24 \quad 3 \quad 3 \quad 60 \quad 9\)
\begin{tabular}{llllll} 
The New Name........................ & 22 & 3 & 58 & 10 \\
A New Perspective Method... & 22 & 1 & 58 & 43
\end{tabular}
\(\begin{array}{llllll}\text { Relativity and Re-Evalua- } \\ \text { tion (Editorial)............. } & 25 & 2 & 61 & 8\end{array}\)
\(\begin{array}{llllll}\text { tion (Editorial) } \\ \text { Revive Graphics } & \text { (Editoriai) } & 23 & 1 & 59 & 8 \\ 9\end{array}\)
SHIGLEY, J.E.
Engineering Drawing:
Static or Dynamic?........... \(19 \quad 1 \quad 5513\)
SHORT, Thomas
Kinematics Can Be Fun...... \(29 \quad 1 \quad 6515\)
Pivots for Linkage Models
(file to file)................ \(29 \quad 1 \quad 65\)
(file to file)............... \(29 \quad 1 \quad 6533\)
SHUFELT, H.J.
Comments Concerning Find-
ings of a National Survey
of Engineering Drawing..... \(7 \quad 2 \quad 437\)

\section*{S}
\begin{tabular}{|c|c|c|c|c|}
\hline SIMONIN, J.R & & & & \\
\hline Should Engineers Be More & & & & \\
\hline Proficient in Instrumental. & & & & \\
\hline Drawing or Freehand Sketch- & & & & \\
\hline ing. & 23 & 2 & 59 & 10 \\
\hline SKAMSER, H.P. & & & & \\
\hline A Course for the Training & & & & \\
\hline of Engineering Drawing & & & & \\
\hline Teachers.............. & 15 & 1 & 51 & 10 \\
\hline Good 01' Joe Doaks & 14 & 2 & 50 & 7 \\
\hline SKAMSER, H.P. and PAUL, R.L. & & & & \\
\hline A Brief Survey of Graphic & & & & \\
\hline Reproduction Processes & & & & \\
\hline Part I & 19 & 1 & 55 & 32 \\
\hline Part II & 19 & 2 & 55 & 23 \\
\hline SKELLEY, Charles L. & & & & \\
\hline Engineering Drawing In & & & & \\
\hline Review....... & 20 & 3 & 56 & 26 \\
\hline SLABY, S.M. & & & & \\
\hline Honors Course in Engineering & & & & \\
\hline Graphics.. & 24 & 2 & 60 & 12 \\
\hline Inter-Disciplinary Challenges & & & & \\
\hline for Graphics................ & 26 & 3 & 62 & 40 \\
\hline Theoretical Graphics & 24 & 3 & 60 & 21 \\
\hline Engineering Graphics in & & & & \\
\hline Norway and the USSR.. & 25 & 1 & 61 & 17 \\
\hline Reflections on Some ?ues- & & & & \\
\hline tions Raised by ASEE Goals of Engineering Study. & & & 64 & 6 \\
\hline  & 28 & 3 & 64 & \\
\hline ary Instruction in Engineer- & & & & \\
\hline ing - How Can It Be Truly & & & & \\
\hline Interdisciplinary?. & 27 & 2 & 63 & 31 \\
\hline Comments on Future Direct- & & & & \\
\hline ions. & 32 & 3 & 68 & 5 \\
\hline The Chairman Reviews the & & & & \\
\hline Year... & 34 & 2 & 70 & 4 \\
\hline Summary for the Committee & & & & \\
\hline On The Journal Self-Study.. & 37 & 1 & 73 & 47 \\
\hline Geometry and Interactive & & & & \\
\hline Computer Graphics. & 40 & 2 & 76 & 34 \\
\hline 1978 International Confer- & & & & \\
\hline ence on Descriptive Geo- & & & & \\
\hline metry............. & 41 & 1 & 77 & 14 \\
\hline Design Graphics and & & & & \\
\hline Appropriate Technology & 41 & 2 & 77 & 18 \\
\hline SLABY, S.M. and ROTENBERG, & & & & \\
\hline Abram & & & & \\
\hline Computer, Aided Design of & & & & \\
\hline Master Templates. & 40 & 1 & 76 & 16 \\
\hline SLANTZ, F.W. & & & & \\
\hline See also Editorials & & & & \\
\hline The Editor's Page & 5 & 1 & 41 & 1 \\
\hline Engineering Drawing For & & & & \\
\hline National Security.... & 5 & 3 & 41 & 8 \\
\hline W.G. Smith's 'Defects in & & & & \\
\hline Modern Engineering Education' - A Discussion. & 2 & 1 & 38 & 9 \\
\hline SMITH, F.h. & & & & \\
\hline Design - A Definition. & 32. & 1 & 68 & \(2^{n}\) \\
\hline SMITH, L. R. & & & & \\
\hline Design Team - Engineer and & & & & \\
\hline Draftsman. . . . . . . . . . . . . . . & 20 & 2 & 56 & 11 \\
\hline Don't Specify the Imposs- & & & & \\
\hline ible. & 20 & 1 & 56 & 63 \\
\hline SMITH (Halifax, N.S.) and & & & & \\
\hline BOWES, W. H. & & & & \\
\hline Problem Solution. & 21 & 1 & 4.8 & 18 \\
\hline
\end{tabular}


\section*{S}
\begin{tabular}{|c|c|c|c|c|}
\hline STINSON, W.G. & & & & \\
\hline The Stereographic Net as a & 40 & 1 & 76 & 20 \\
\hline The Stereographic Net in & & & & \\
\hline Structural Geology Problems Involving Rotation......... & 41 & 2 & 77 & 41 \\
\hline A New Approach to the & & & & \\
\hline Problem of the Shortest & & & & \\
\hline Grade Line Connecting Two & & & & \\
\hline Skew Lines & 21 & 2 & 57 & 45 \\
\hline STEWART, W.C & & & & \\
\hline Screw Threads for Fasteners. & 10 & 3 & 46 & 14 \\
\hline STONE, Oliver M. & & & & \\
\hline Instruction in Graphics by Closed-Circuit Tele- & & & & \\
\hline vision................ & 23 & 3 & 59 & 22 \\
\hline STORY, C.M. & & & & \\
\hline Evaluation of a Program & & & & \\
\hline in Engineering Design & & & & \\
\hline Graphics............. & 35 & 1 & 71 & 30 \\
\hline STREET, W.E & & & & \\
\hline See also Editorials & & & & \\
\hline Development and Use of & & & & \\
\hline Training Tests in Engi- & & & & \\
\hline neering Drawing..... & 3 & 2 & 39 & 8 \\
\hline Dimensioning & 3 & 4 & 39 & 7 \\
\hline Drawing in the Army Spec- & & & & \\
\hline ialized Training Program. & 8 & 1 & 44 & 12 \\
\hline STREIB, William & & & & \\
\hline Why Simplified Drafting?. & 20 & 1 & 56 & 65 \\
\hline Drawing Teachers in the & & & & \\
\hline English Department. & 18 & 3 & 54 & 15 \\
\hline SULLIVAN, Henry W. & & & & \\
\hline Geometry and Heat Transfer & & & & \\
\hline in a Helical Coil. & 27 & 2 & 63 & 28 \\
\hline SVENSEN, C.L. & & & & \\
\hline An Appreciation of Dean & & & & \\
\hline Anthony. & 3 & 1 & 38 & 3 \\
\hline The Art of Lettering & 5 & 2 & 41 & 15 \\
\hline Drawing in Engineering Education. & 12 & 3 & 48 & 6 \\
\hline Professional Development of the Engineer. & 11 & 1 & 47 & 15 \\
\hline Professor Thomas Ewing & & & & \\
\hline French.... & 9 & 1 & 45 & 4 \\
\hline The Graphic Language and & & & & \\
\hline the Professional Engineer. & 17 & 3 & 53 & 16 \\
\hline Personality Sketch of Dr. William Ezra Street..... & 17 & 3 & 53 & 23 \\
\hline SWARZLANDER, Harry & & & & \\
\hline Bringing Electronics Into & & & & \\
\hline Engineering Graphics...... & 25 & 3 & 61 & 24 \\
\hline
\end{tabular}


\section*{U}

UMHOLTZ, R.C.
A Renaissance in the Teach-
ing of Graphical Methods.. 34


WALRAVEN, H.P.Dale
What Can the High School
Drawing Teacher Do to Help
the Freshman Engineering
Student?...................... . \(27 \quad 2 \quad 6324\)
WALSH, Gerald W., Jr.
An Aid in Perspective
Drawing...................... \(22 \quad 2 \quad 5842\)
Applying Graphic Skilis
to the Solution of Differ-
ential Equations............ \(17 \quad 1 \quad 5314\)
WANG, Fu-Chun
Engineering Graphics at
National Taiwan University. \(\begin{array}{lllll}42 & 3 & 78 & 59\end{array}\)
WARNER, Frank M.
The New Student.............. \(29 \quad 2 \quad 6517\)
Application of Descrintive
Geometry to Industrial Engi-
neering Problems............ 1124475
Development of Students'
Ability to Think and Ana-
lyze in Space................ 131439
Welcome to Seattie........... 14 . 20 5
WASHBURN, B.D.
Airplane Lines and Loft-
ing.
WATSON, J.F.
Graphics in the United
Kingdom...................... \(38 \quad 1 \quad 7417\)
WAYMACK, T.W.
Color As a Teaching Aid for
Engineering Drawing........ \(16 \quad 1 \quad 52 \quad 9\)
WAY!MACK, Rex \(W\).
Graphics Shock-Wave......... \(26 \quad 1 \quad 6215\)
WEBER, \(\begin{aligned} & \text { GRETCHEN } \\ & \text { Cailigraphy................... }\end{aligned} 4_{2} \quad 3 \quad 78 \quad 24\)
WEINER, L.M.
On Transposing Nomograms
to Slide Rules (corrected
from 30366 , Ed.)........... \(31 \quad 2 \quad 6720\)
WEED, M.L.
Design Projects: Large vs.
Sma11; Individual vs. Team. \(42 \quad 2 \quad 78 \quad 6\)
WEIDHAAS, Ernest R.
Creative Design in Engineer-
ing Graphics................... \(27 \quad 2 \quad 63 \quad 12\)
\(\begin{array}{lllll}\text { Solve This One.............. } 20 & 2 & 56 & 49\end{array}\)
Motivation as a Teaching
Tool........
The Assembiy and Details for
\(\begin{array}{llllll}\text { a Centering Attachment..... } & 5 & 3 & 41 & 17\end{array}\)
\(\begin{array}{llllll}\text { The Logic of Visualization. } & 13 & 2 & 42 & 15\end{array}\)
What Is Fundamental in Des-
criptive Geometry............. \(14 \quad 1 \quad 50 \quad 6\)
What is Basic Graphics?.... \(\begin{array}{llllll}31 & 3 & 67 & 12\end{array}\)
W!ESTFALL, C.Z.
Oppenheimer Award to Oppen-
heimer!
\(39 \quad 1 \quad 75 \quad 47\)
WHEELER, John A.
"Geometry" and Relativity
Today.....
WILCOX, E.R.
Personality Sketch of Prof.
F.M. Warner

WILCOX, R.J.
A New Engineering Discipline -
Technical Analysis and Def-
inition....................... 26126212

WILKS, Ed
Cartesian Coordinates in
Engineering Drawing......... \(31 \quad 1 \quad 6711\)
Set Notation in Interaction \(32 \quad 2 \quad 6832\)
Problems............................
Geometry by Orthographic
Photography- Descriptive
Geometry Method............. 3511414
WILLIAMS, E.L.
What Price Culture in
Engineering Drawing, Des-
criptive Geometry and El-
ementary Machine Design.... 3113811
WLADAVER, Irwin
See also Editorials
Analysis, Synthesis, and
Eye-Wash..................... 262662
Better Methods of Instr-
uction in Engineering and
Technical Drawing............ 222547
Design For Barkin' Up The
Wrong Tree................. 29
1
Engineering Education \&
Engineering Graphics.......
E. \(28 \quad 3 \quad 6426\)
Engineering Graphics.....
or Hindsight Is Easier..... 26 1 6242
Professor Harold B. Howe
(Advertising Mgr. JED.).... \(21 \quad 2 \quad 57 \quad 11\)
Where Ange1s Fear To Tread. \(29 \quad 2 \quad 6511\)
Index, 1936-52, To the
Journal....................... 16 Sup. to
of Engineering Drawing..... 17153
An Index to the Past and to
the Future.................. \(17 \quad 2 \quad 5314\)
A Letter to the Editor -
\(\begin{array}{llllll}\text { Fido's Chew-Problem......... } & 18 & 1 & 54 & 20 \\ \text { Validity of Examinations... } & 17 & 3 & 53 & 17\end{array}\)
Géométrie Cotée, ̧aspard
Monge, and the 'Modern
System'....................... \(41 \quad 3 \quad 7730\)
International Conference on
Descriptive Geometry: A
Dissent and a Suggestion... \(41 \quad 2 \quad 7727\)
Index to Journal, 1936-52,
Sup. to......................
Index to Journal for 1953.
Index to Journal for 1954.
Index to Journal for 1955..
Index to Journal for 1936-
1978........................

WLADAVER,
Ear1 D.
Index for 1955-65 Journal,
Sup. to..................... . 301166
WLADAVER, Irwin and JOHNSON,
L. O.

Problem Books - Yes or No.. \(17 \quad 2 \quad 5311\)
College Credit for High
School Drawing
\(\begin{array}{llll}16 & 2 & 52 & 12\end{array}\)
WOCKENFUSS, W.A.
Math Motivates Students
to Learn Graphics........... \(37 \quad 1 \quad 7330\)
WOLF, B.E. and MOSILLO, F.E.
Motivation by Computer
Graphics..................... 40
\(40 \quad 1 \quad 76 \quad 37\)
WOLOWICZ, C.S.
A New Engineering Discip-
line-Technical Analysis
and Definition............... \(26 \quad 1 \quad 6212\)
WOOD, A.B.
Report of the Committee
on Minimum Standards....... 12348

\section*{W}
\begin{tabular}{|c|c|c|c|c|}
\hline WOOLRYCH, E.H. and CHRISTIAN_ SON, L.C. & & & & \\
\hline A Study of Desirable Requirments for Beginning Draftsmen. & 19 & 1 & 55 & 42 \\
\hline WORSENCROFT, R.R. & & & & \\
\hline See A1so Editorials & & & & \\
\hline Objectives of Engineering & & & & \\
\hline Drawing in Engineering & & & & \\
\hline Education............. & 21 & 1 & 57 & 32 \\
\hline Belt Tightener for Motor- & & & & \\
\hline Compressor. . . . . . . . . & 6 & 1 & 42 & 10 \\
\hline On What Basis should the & & & & \\
\hline Engineering Colleges Grant & & & & \\
\hline Credit for High School & & & & \\
\hline Drawing? & 13 & 2 & 49 & 8 \\
\hline Orthographic Theory in & & & & \\
\hline Perspective Drawing & 8 & 2 & 44 & 7 \\
\hline A Study in Grading Lettering & 5 & 2 & 41 & 6 \\
\hline Teaching Fundamentals in & & & & \\
\hline Engineering Drawing.. & 4 & 1 & 40 & 21 \\
\hline File to File: Tunnel & & & & \\
\hline Design. & 30 & 1 & 66 & 30 \\
\hline YOODSON, N.E. & & & & \\
\hline Human Engineering. & 37 & 3 & 73 & 22 \\
\hline WOODNORTH, Forrest M. & & & & \\
\hline The Challenge of Multidimensional Parallel-Axis & & & & \\
\hline Projection.............. & 26 & 3 & 62 & 26 \\
\hline On Graphical Solutions of & & & & \\
\hline First Order Differential & & & & \\
\hline Equations & 26 & 2 & 62 & 48 \\
\hline WU, Chih and HIRSCH, R.A. & & & & \\
\hline Computer-aided Graph Paper & & & & \\
\hline Construction. & 42 & 3 & 78 & 38 \\
\hline
\end{tabular}

\section*{Y}

\section*{Z}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{YANKEE, H.W.} \\
\hline \multicolumn{5}{|l|}{Foreword: The 1967 Summer} \\
\hline School; Its Purposes and Its & & & & \\
\hline Organization. & 31 & 4 & 67 & ii \\
\hline \multicolumn{5}{|l|}{YARRINGTON, P.T.} \\
\hline \multicolumn{5}{|l|}{Circle in the Oblique} \\
\hline Position. & 17 & 3 & 53 & 26 \\
\hline \multicolumn{5}{|l|}{YOUNG, C.H.} \\
\hline \multicolumn{5}{|l|}{The Descriptive Geometry} \\
\hline \multicolumn{5}{|l|}{Three-Dimensional Project.} \\
\hline \multicolumn{5}{|l|}{The Cooper Union Engineer-} \\
\hline ing School-Day Session. & 16 & 2 & 52 & 13 \\
\hline \multicolumn{5}{|l|}{A Talk to Beginning Stu--} \\
\hline dents in Drawing. & 11 & 1 & 47 & 18 \\
\hline \multicolumn{5}{|l|}{YOUNG, Lyle E.} \\
\hline \multicolumn{5}{|l|}{A Balanced Course in Engi-} \\
\hline neering Graphics... & 20 & 1 & 56 & 60 \\
\hline Short Terminal Course in & & & & \\
\hline Technology & 20 & 1 & 56 & 14 \\
\hline
\end{tabular}

ZAMONSKI, Uzi
Intersection Between Curved Bodies in a Single Projection Drawing................. \(35 \quad 3 \quad 7138\)
ZAMONSKY, Uzi and SHAPIRA, Ruth
A New Solution Method for cylinder and Cone Problems. \(32 \quad 3 \quad 6855\)
ZELLMER, E.J.
Projected Trimetrics....... \(14 \quad 2 \quad 50 \quad 13\)
ZIMDARS, Herbert W .
Answers to Some Nuestions.. \(20 \quad 1 \quad 56\)
ZOZZORA, F. and SAVAGE, R.V.
Combined Bearing Cap,
Speedometer Gear and Worm
Housing....................... 7 . 3314

organized in chronological order as they were presented so that the reader may experience the Conference just as it happened. Hundreds of photographs and figures are included to illustrate the text material. The name and address as well as a photograph and biographical sketch of each author are included with each paper. In addition, an alphabetical listing of all attendees with their addresses is included in the Appendix.

\section*{ORDER YOUR COPY(S) NOW}

Whether or not you attended the International Conference on Descriptive Geometry, certainly you will want to purchase a copy of the PROCEEDINGS. Anyone teaching or doing research in the field of Engineering Graphics will find the PROCEEDINGS a most complete and up-to-date summary of the "state of the art" in descriptive geometry, computer graphics, and modular instruction in graphics.

To order your copy simply complete the order form below and mail with your check for the proper amount to:

Garland K. Hilliard, Editor
Proceedings: ICDG
239 Riddick Hall
North Carolina State University
Raleigh, North Carolina 27650

Please send me copies of the PROCEEDINGS: INTERNATIONAL CONFERENCE ON DESCRIPTIVE GEOMETRY at \(\$ 15.00\) each. A check for \(\qquad\) is enclosed. -

NAME
A.JDRESS \(\qquad\)

\section*{FOREIGN ORDERS PLEASE NOTE!}

Foreign orders will be mailed Air Mail. To cover the cost of postage, please add \(\$ 2.00\) for each copy ordered. Also, please send a check for the full amount made out to be drawn from a United States bank in US dollars.

MAKE ALL CHECKS PAYABLE TO:
Engineering Design Graphics Journal

\section*{CHRONOLOGICAL LIST OF CONFERENCES AND SUMMER SCHOOLS}

1928 - University of North Carolina
1930 - Ecole Polytechnique, Montreal
1931 - Purdue University
- Oregon State College
1933 - Stevens Hotel, Chicago
1935 - Georgia School of Technology
1937 - M.I.T. and Harvard University
1938 - Texas A\&M College
1940 - University of California, Berkeley
1941 - University of Michigan
1942 - New York University
1943 - I.I.T. and Northwestern University
1944 - University of Cincinnati
1945 - Cancelled (because of WWII)
- ashington University
- University of Minnesota
1948 - University of Texas
1949 - Rensselaer Polytechnic Institute
1950 - University of Nashington
- Michigan State College
- Dartmouth College
1953 - University of F1orida
- University of Illinois, Urbana
1955 - Pennsylvania State University
- Iowa State College
1957 - Cornell University
1958 - University of California, Berkeley
1959 - Carnegie Institute \&
            University of Pittsburgh
1960 - Purdue University
1961 - University of Kentucky
1962 - U.S. Air Force Academy
1963 - University of Pennsylvania
1964 - University of Maine
1965 - Illinois Institute of Technology
1966 - Washington State University
1968 - U.C.L.A
1969 - Pennsylvania State University
1970 - Ohio State University
1971 - U.S. Naval Academy
1972 - Texas Tech University
1973 - Iowa State University
1974 - Rensselaer Polytechnic Institute
975 - Colorado State University
1977 - University of North Dakota
1978 - University of British Columbia

SUMMER SCHOOLS
```

1927 - Corne11 University (Before the
establishment of the Division)
1930 - Carnegie Institute
1936 - University of Wisconsin
1946 - Washington University
1951 - Michigan State College
1956 - Iowa State College
1961 - Carnegie Institute
1967 - Michigan State University
1972 - Texas Tech University
1978 - University of British Columbia

```

MIDYEAR MEETINGS
1947 - Brooklyn Polytechnic, Feb.
1947 - Rackham Foundation, Detroit, Dec.
1949 - Ohio State University, Jan.
1950 - University of I11inois \& I.I.T., Jan.
1951 - Texas A\&M College, Jan.
1952 - Cooper Union, Columbia University, and U.S.M.A., Jan.
1953 - University of Nebraska, Jan.
1954 - University of Pennsylvania, Jan.
1955 - University of Tennessee, Jan.
1956 - Illinois Institute of Technology, Jan.
1957 - Rice Institute, Jan.
1958 - General Motors Institute, Jan.
1959 - Wayne State, Jan.
1960 - Missouri School of Mines, Jan.
1961 - University of Wichita, Jan.
1962 - University of Wisconsin, Jan.
1963 - Kansas State University, Jan.
1964 - Texas A\&M, Jan.
1965 - Tampa (Florida, Florida State and Southern Florida), Jan.
1965 - Michigan State, Oct.
1967 - Northeastern University, March
1968 - Tampa, Jan.
1969 - Louisiana State, Jan.
1970 - California State Polytechnic, Jan.
1970 - University of Massachusetts, Nov.
1971 - Houston (University of Houston, Rice Institute and Texas A\&M), Nov.
1973 - Colorado University, Jan.
1974 - New Orleans, (Louisiana State University), Jan.
1974 - Williamsburgh, Va., (University of Virginia and V.P.I and S.U.), Dec.
1976 - Arizona State, Jan.
1977 - Ecole Polytechnique, Jan.
1978 - University of Alabama, Jan.


```


[^0]: * See Vol. 27, No. 3, 1968, p 11.

