
8 - E n g i n e e r i n g D e s i g n G r a p h i c s J o u r n a l

v o l u m e 7 4 n u m b e r 1

Using Pair Programming to Teach CAD

Based Engineering Graphics

Robert P. Leland

Oral Roberts University

Abstract

Pair programming was introduced into a course in engineering graphics that emphasizes solid modeling using Solid-

Works. In pair programming, two students work at a single computer, and periodically trade o� roles as driver (hands

on the keyboard and mouse) and navigator (discuss strategy and design issues). Pair programming was used in a

design project, and in a subsequent year in a design project and several smaller special projects. Student outcomes for

two years were compared with a previous year in which pair programming was not used. Improvements were seen

in design project scores, overall course scores, and project submission rates. �e course is normally taken by �rst year

students during the spring semester. Retention into the sophomore year was also higher for students participating in

pair programming.

INTRODUCTION

Pair programming, an ingredient in extreme
programming, has been used extensively in soft-
ware development in industry, and has been used
experimentally in computer programming based
courses for engineering students. �is paper de-
scribes the introduction of pair programming
into the course EGR 140 Engineering Graphics
at Oral Roberts University. �e course uses the
CAD software SolidWorks, and emphasizes solid
modeling. Pair programming was introduced in
a design project and several smaller special proj-
ects.

In pair programming, two students work on
the same computer, and share one keyboard
and one mouse. One student is the driver, and
is operating the keyboard and mouse. �e driver
is actually creating the solid models. �e other
student is the navigator, who is checking to see
that the speci�cations in the assignment are be-
ing met, thinking about the next step, and giving
advice.

Pair programming is a part of a larger soft-

ware development process known as Extreme
Programming (XP), which has been reported to
improve morale and customer satisfaction, and
reduce project schedules (Williams & Upchurch,
2001). �e components of XP can be used to de-
tail an educational process to develop expertise in
software design (Williams & Upchurch, 2001).

A number of studies have shown successful
use of pair programming at the university level.
A study involving 1200 students in introductory
programming classes at two universities showed
that students who engaged in pair programming
performed as least as well as students working in-
dependently. A greater percentage of paired stu-
dents passed the course with a grade of C or bet-
ter. Also, a much larger percentage of the paired
students declared a Computer Science major one
year later (Williams, McDowell, Nagappan, Fer-
nald, & Werner, 2003). In a study examining
student behavior in computer labs, focus groups
revealed that the paired students appreciated the
ability to get quick answers to questions, without
having to wait for an instructor. In addition, the
lab instructors felt pair programming made their
jobs easier as well (Williams et al., 2003). Stu-

L e l a n d - 9

w i n t e r 2 0 1 0

dents using pair programming were more likely
to turn in working programs, were more likely
to turn in their assignments to begin with, and
reported being more con�dent and more satis�ed
with their experience (Gehringer, 2003). In an-
other study of pair programming in an introduc-
tory C++ programming course, feedback from
instructors indicated that students completed as-
signments in less time, and overcame roadblocks
such as syntax errors more quickly. Student feed-
back also indicated that pair programming was
an e!ective learning experience. Students also felt
more con�dent, and that the quality of their work
was better. Students felt the assignments were less
stressful, and the instructors also observed a more
positive and less stressful atmosphere in the class
(Freeman, Jaeger & Brougham, 2003). In an-
other study, students reported that pair program-
ming helped them understand programming
better, and regarded working with a partner as
a positive experience (Howard, 2006-2007). In
another study, student programming teams using
pair programming produced the same amount of
code as teams of students working individually.
Students using pair programming reported �nd-
ing errors more rapidly and produced more read-
able code (Bipp, Lepper, & Schmedding, 2008).
In another study, pair programming increased
student retention and program quality. A dramat-
ic increase in the percentage of female students
persisting in a Computer Science major after one
year was seen (McDowell, Werner, Bullock, &
Fernald, 2006). Combining cooperative learn-
ing techniques with pair programming, resulted
in improved student performance, and students
reported that pair programming was helpful to
them in learning programming (Mentza, van der
Walta, & Goosenb, 2008). In another study,
82% of students reported that pair programming
was a positive experience, and 60% of students
showed improved performance on exams after
using pair programming (Šerbec, Kaučič, & Ru-
gelj, 2008). When pair programming was used
in an introductory computing class, the instruc-
tors observed that students engaged in higher lev-
el thinking more frequently, especially in extend-
ing class concepts to new applications (Williams,
Wiebe, Yang, Ferzi, & Miller 2002).

Pair programming using an online virtual envi-
ronment was studied. An increase in productivity,
measured in lines of code divided by time spent
was seen using pair programming. Students pro-
duced code with fewer defects, and scored higher
on programming projects. Exam scores were not
signi�cantly a!ected by pair programming. �e
vast majority of students reported they preferred
pair programming (Zacharis, 2009).

Pair programming has also been studied at
the middle school level, especially for female
students. Transcripts were used to assess inter-
actions between middle school girls using pair
programming to determine successful practices
(Werner & Denning, 2009). Verbal responses
from middle school girls involved in pair pro-
gramming showed it was well received (Werner,
Denner, & Bean, 2004).

Suggested guidelines for pair programming
classes include pairing students by skill level,
making lab sessions that use pairing mandatory,
scheduling so assignments can be mostly �nished
in session time, and creating a collaborative envi-
ronment (Bevan, Werner, & McDowell, 2002).
Additional guidelines include using closed labo-
ratory sessions, strict attendance policies, peer
evaluations, instructor assigned pairs, training of
teaching assistants and students, rotating pairs,
and a rapid response to non-participating part-
ners (Williams, 2007).

�e use of pair programming in educational
contexts has been reported primarily in introduc-
tory programming courses. Pair programming
has also been used in a Computer Architecture
course. Student feedback indicated this was a
positive experience, and student performance was
in line with or better than that of students who
worked independently (Gehringer, 2003). �is
paper describes the author’s experience in extend-
ing pair programming beyond the traditional
computer programming context, and employ-
ing it in an Engineering Graphics class. Student
performance and retention before and after the
introduction of pair programming are compared.

1 0 - E n g i n e e r i n g D e s i g n G r a p h i c s J o u r n a l

v o l u m e 7 4 n u m b e r 1

PAIR PROGRAMMING IN ENGINEER-

ING GRAPHICS

�is paper describes the introduction of pair
programming into the course EGR 140 Engi-
neering Graphics at Oral Roberts University. �e
course teaches the use of SolidWorks in creating
solid models, assemblies, and drawings of those
models. �e approach is primarily learning by
doing with small amounts of instruction, mod-
eling and coaching. Pair programming was in-
troduced through special design projects. �e
students worked individually on the majority of
in-class work and homework assignments, as well
as all tests. �us students worked individually in
acquiring basic skills, and worked in pairs when
applying those skills to more challenging and
open ended problems.

An example of the possible steps used to pro-
duce a SolidWorks model of the CD case lid
shown in Figure 1 is given below. �e use of the
Mirror feature requires some planning ahead.

Steps:

1. Sketch and dimension a rectangle for the
top of the lid, and extrude it into a solid
object.

2. Sketch and dimension a rectangle for one
side of the lid, and extrude it into a solid
object.

3. Sketch and dimension a cut for the side of
the lid to shape it and make the cut.

4. Sketch and dimension a rectangle for the
slot in the side of the lid and make the cut.

5. Sketch and dimension a semicircle for the
tabs on the side of the lid. Use the plane
of the lower side of the slot. Extrude this
sketch into a solid tab.

6. Use the Mirror feature to create a second
slot and tab on the same side.

7. To make the ribbing on the side, sketch
and dimension a small rectangle on the
side. Create a pattern of these rectangles
along the side. Cut indentations for the
rectangles.

8. Use the Mirror feature to create the second
side, with slots, tabs and ribs.

9. Set the material to acrylic.

Figure 1. Process for creating a SolidWorks model of a CD case lid.

L e l a n d - 1 1

w i n t e r 2 0 1 0

�e solid modeling task is very di!erent that
writing a computer program, since a procedural
object is not being produced and no new data
structures must be designed. �e solid modeling
task shares aspects with programming, such as
the need for conceptualization, identi�cation of
a process for creating a solid part, the limitations
created by early design decisions, etc. Road-
blocks in using the software due to student er-
rors, similar to syntax errors, are also common
and must be overcome. Signi�cant di!erences in
the tasks also exist. Rather than a sequence of
instructions, a sequence of steps is identi�ed to
create the object. �e creation of the objects and
assemblies requires some common sense, plan-
ning and problem solving in selecting a process
for creating the parts. In general, the product
produced in solid modeling is less complex and
more transparent than a computer program, so
errors are easier to detect. Also, there is usually
instant visual feedback telling the student if their
steps to create an object are correct or not. How-
ever for more complex objects and assemblies,
the constraints created by a design choice are not
always immediately obvious. It is probably the
novice status of the students that contributes the
greatest challenges, so pair programming may be
most useful for learning, but may not ultimately
be part of their professional practice.

As in programming classes, the students repre-
sent a wide range of expertise. In this author’s ex-
perience, some students can complete an exam in
10 minutes that some students will not manage
to complete in 50 minutes. �e idea of think-
ing ahead, planning, and making good initial
design decisions is not innate to most students,
and must be learned. Also, students working
in pairs can be constrained to use a single com-
puter, keyboard and mouse. In solid modeling,
the mouse is used in a more ‘analog’ manner to
create various shapes and approximate dimen-
sions, while precise dimensions are entered using
the keyboard.

Although the students frequently do not inter-
act in strict driver-navigator roles, this is the ideal
presented. �e students are to alternate roles. In

class, students alternate roles at �xed intervals of
time. In industrial practice, this alternation fre-
quently depends on which programmer is imple-
menting their idea, and which is giving feedback.

Pair programming was introduced into an en-
gineering graphics course normally taken by �rst
year students in the spring semester. �e course
carries two credit hours, and meets for three
hours per week. �e students represent engineer-
ing majors, with concentrations in mechanical,
electrical and computer engineering, biomedi-
cal engineering majors, and physics majors. A
majority of the students are in the mechanical
engineering concentration. A small number of
students from computer science and other majors
have also taken the course. �e students typically
have diverse backgrounds with respect to com-
puter expertise, and intuition about solid objects,
drawings and assemblies.

Pair programming was introduced in two con-
secutive years, 2007 and 2008. �e �rst year,
pair programming was limited to a single major
project that was originally allotted four class pe-
riods. �e second year, pair programming was
used in the major project and several new smaller
projects, which were allotted two class peri-
ods each. �e remaining in class exercises and
homework assignments, as well as all tests, were
completed by the students working individually.
In both years, all students participated in pair
programming unless there were an odd number
of students in the class. In this case, one student
worked independently, and their performance is
not included in the results below. �is student
might be repeating the class or frequently absent
due to athletics, so working independently was
more appropriate.

Pairs were selected by the instructor. When-
ever possible, female students were paired togeth-
er, and students were paired with other students
of similar ability. �e similar ability pairing was
done in order to ensure participation by both
students in the pair. While working in class, stu-
dents were instructed to switch roles every 10 to
20 minutes. �e times to switch were announced

1 2 - E n g i n e e r i n g D e s i g n G r a p h i c s J o u r n a l

v o l u m e 7 4 n u m b e r 1

by the instructor. �ere were some students who
did not switch roles at these times, and there was
one pair where only one student attended the
class. �e instructor was not able to monitor
how the students interacted outside of class. For
most of the smaller projects, which required one
to two class periods, the students either complet-
ed the project during the scheduled class periods,
or required a small amount of out of class time
to complete it. For the design project, which was
more involved, a signi�cant amount of the work
was performed in four to �ve class periods, al-
though more out of class work was involved.

In 2006 and 2007, the major design project
consisted of an assembly containing a shaft, $y-
wheel, mount, baseplate and bearing that the stu-
dents must create in SolidWorks. Some dimen-
sions were speci�ed, and others were required to
be dependent on the speci�ed dimensions. In
2008, the major design project was to create a
model of a locomotive engine with working pis-
tons that would drive the wheels based on photos
and a diagram of the linkage between the wheels
and pistons. In 2008, several smaller projects
using pair programming were also assigned. In
general these also required the students to model
a solid object or assembly from a photo. �e as-
signments are described in the appendix.

RESULTS

Several e!ects were noticed by the instructor
when pair programming was introduced.

First, this introduced teams into the course,
which made it more ‘relational’, which in general
created a positive environment for �rst year stu-
dents that should support retention. Secondly,
the percentage of projects that were turned in on
time increased. �ird, the percentage of students
who seemed ‘lost’ was reduced. Fourth, the in-
structor observed that students seemed to enjoy
the class more and interacted more like profes-
sionals, staying focused on the project.

Students were considered to have not signi�-
cantly participated in the class if they did not at-

tempt the �nal two exams and the design project.
In general these students did not attempt other
exams, turn in homework, or attend class. �ese
students are excluded from the results for the de-
sign project and course scores and the retention
study.

In spring 2006, prior to introducing pair pro-
gramming, the average score on the major de-
sign project was 71.26 out of 100. �ree out of
26 students did not turn in the project. �eir
scores (0) are not included in the average. After
introducing pair programming, the average score
increased to 86.2 in 2007 and 86.6 in 2008. In
2007 and 2008, all students who signi�cantly
participated in the course turned in the design
project. It should be noted that the design project
was the same for 2006 and 2007, and a more ad-
vanced design project was assigned in 2008. �is
data is summarized in Table 1.

 Overall course scores for the students for 2006
– 2008 were comparable. After excluding stu-
dents who did not signi�cantly participate (one
student in 2006, one student in 2007, and one
student in 2008), the average over all scores were:
2006: 79.9, 2007: 84.81, 2008: 84.9. �is data
is shown in Table 1. Slight increases are seen in
the years using pair programming, but the num-
ber of students is too small for these di!erences to
be statistically signi�cant. �e comparability of
results does indicate that pair programming was
not hurting the students. �is is consistent with
other results for pair programming reported in
the literature.

During the same period of time, retention im-
proved dramatically. �e list of students enrolled
in EGR 140 in the spring semester was compared
to the class roster for a mandatory departmen-
tal seminar in the following fall. Students who
enrolled in the seminar and attended more than
one seminar, or who otherwise were known to
still be in the program, were considered to be re-
tained. Students who were juniors and seniors
in EGR 140, or who were retaking EGR 140, or
who did not signi�cantly participate in EGR 140
were excluded. Two students in spring 2006 who

L e l a n d - 1 3

w i n t e r 2 0 1 0

were Computer Science majors were excluded.
Transfer students in their �rst year at ORU were
included in the retention study. �e retention
rates are indicated in Table 2.

Although the sample size is fairly small, this is
a large increase in retention of students into the
sophomore year, which is a key retention barrier.
Although there may be other factors involved in
the increased retention, it appears that the use
of pair programming certainly did not hurt re-
tention. Note that the students considered here
are �rst year students participating in EGR 140,
which is taught in the spring semester, rather
than all students entering in the fall semester.
Also the department o!ers a program in Engi-
neering Physics, and a small number of students
in EGR 140 are Physics majors, and these stu-
dents are also included in the above results.

Although two sections of the course are taught
every spring, comparison of these two sections
would not provide a good basis for assessment,
since one of the classes consists primarily of cal-
culus ready �rst year students, and the other non-
calculus ready students. �erefore the compari-
son is made between students taking the course
before and after the introduction of pair pro-
gramming.

CONCLUSION

Pair programming can be used in an Engineer-
ing Graphics course, and appears to positively in-

$uence student performance. In addition, higher
levels of retention were seen after pair program-
ming was introduced. �e instructor intends to
continue using pair programming in this course,
and will attempt to improve student compliance
in alternating roles.

REFERENCES

Bevan, J., Werner, L., & McDowell, C. (2002).
Guidelines for the use of pair programming in
a freshman programming class. Proceedings of
IEEE-CS Conference on Software Engineer-
ing and Training, 100 – 107. doi:10.1109/
CSEE.2002.995202

Bipp, T., Lepper, A., & Schmedding, D. (2008).
Pair programming in software development
teams – An empirical study of its bene�ts.
Information and Software Technology, 50,
231–240. doi:10.1016/j.infsof.2007.05.006

Booty, R. A. (2001). Steam Locomotive
Walshaert Valve Gear Diagram, Retrieved
February 2008, from http://home.roadrun-
ner.com/~trumpetb/loco/wdiagram.html.

Freeman, S. F., Jaeger, B. K., & Brougham, J. C.
(2003). Pair programming: More learning
and less anxiety in a �rst programming course.
Proceedings of the ASEE Annual Conference
and Exposition. Retrieved from http://www.
asee.org/conferences/annual.cfm.

Gehringer, E. F. (2003) Is pair programming an
e!ective way to teach computer architecture?

Semester Spring 2006 Spring 2007 Spring 2008

Total Students Considered 26 22 26

Average Design Project Score 71.3 86.2 86.6

Students Not Turning In Project 3 0 0

Overall Course Score 79.9 84.81 84.9

Table 1. Student Design Project Scores.

Semester Spring 2006 Spring 2007 Spring 2008

Total Students Considered 23 21 25

Students Retained 13 19 19

Percent Retained 57% 90% 76%
Table 2. First to Second Year Retention of Students taking EGR 140.

1 4 - E n g i n e e r i n g D e s i g n G r a p h i c s J o u r n a l

v o l u m e 7 4 n u m b e r 1

Proceedings of the ASEE Annual Conference
and Exposition. Retrieved from http://www.
asee.org/conferences/annual.cfm.

Hanks, B., McDowell, C., Draper, D., & Krn-
jajic, M. (2004). Program quality with pair
programming in CS1. Proceedings of the 9th
Annual Conference on Innovative Technology
and Computer Science Education, 176-180.
doi:10.1145/1007996.1008043.

Howard, E. E. (2006-2007) Attitudes on us-
ing pair programming. Journal of Educa-
tional Technology Systems, 35(1), 89-103.
doi:10.2190/5K87-58W8-G07M-2811.

McDowell, C., Werner, L., Bullock, H. E., & Fer-
nald, J. (2006). Pair programming improves
student retention, con�dence, and program
quality. Communications of the ACM, 49(8),
90-95. doi:10.1145/1145287.1145293.

Mentza, E., van der Walta, J. L., & Goos-
enb, L. (2008). �e e!ect of incorporat-
ing cooperative learning principles in pair
programming for student teachers. Com-
puter Science Education, 18(4), 247–260.
doi:10.1080/08993400802461396

Šerbec, N., Kaučič, B., & Rugelj, J. (2008). Pair
programming as a modern method of teach-
ing computer science. International Journal
of Emerging Technologies in Learning, 2(Spe-
cial Issue: MIPRO 2008), 45-49. Retrieved
February 16, 2010, from http://online-jour-
nals.org/i-jet/article/view/647.

Swanson, P. (nd). Photos of Kewaunee Green
Bay & Western #49. Retrieved Feb. 18, 2010,
from Mid-continent Railway Museum, New
Freedom, Wisconsin, http://midcontinent.
org/1385/locos2.jpg, http://midcontinent.
org/1385/locos3.jpg.

Werner, L. L., Denner, J., & Bean, S. (2004).
Pair programming strategies for middle
school girls. Proceedings of the Seventh
IASTED International Conference Comput-
ers and Advanced Technology in Education,
161-166. Retrieved from http://users.soe.
ucsc.edu/~charlie/projects/pairprogramming/
CATE.pdf.

Werner, L., & Denning, J. (2009). Pair program-
ming in middle school: What does it look
like? Journal of Research on Technology in
Education, 42(1), 29–49.

Wiebe, E. N., Williams, L., Petlick, J., Nagappan,
N., Balik, S., Miller, C., & Firzli, M. (2003).
Pair programming in introductory program-
ming labs. Proceedings of the ASEE Annual
Conference and Exposition. Retrieved from
http://www.asee.org/conferences/annual.cfm.

Williams, L. (2007). Lessons learned from seven
years of pair programming at North Caroline
State University. SIGCSE Bulletin, 39(4),
79-83. doi:10.1145/1345375.1345420

Williams, L., Wiebe, E., Yang, K., Ferzli, M.,
& Miller, C. (2002). In support of pair pro-
gramming in the introductory computer sci-
ence course. Computer Science Education,
12(3), 197-212. Retrieved from http://col-
laboration.csc.ncsu.edu/laurie/Papers/PP%20
in%20Introductory_CSED.pdf.

Williams, L., McDowell, C., Nagappan, N.,
Fernald, J., & Werner, L. (2003). Build-
ing pair programming knowledge through
a family of experiments. Proceedings of the
2003 International Symposium on Empiri-
cal Software Engineering, 143. doi:10.1109/
ISESE.2003.1237973

Williams, L., & Upchurch, R. (2001). Extreme
programming for software engineering edu-
cation. Proceedings of the 31st ASEE/IEEE
Frontiers in Education Conference, T2D –
12-17. doi:10.1109/FIE.2001.963882

Zacharis, N.Z. (2009). Evaluating the e!ects
of virtual pair programming on students’
achievement and satisfaction. International
Journal of Emerging Technologies in Learn-
ing, 4(3), 34-39. doi:10.3991/ijet.v4i3.772

APPENDIX: DESIGN PROJECTS

USED

Design project for spring 2006 and spring
2007: Develop a SolidWorks assembly for the
pulley, shaft and mounting below.

L e l a n d - 1 5

w i n t e r 2 0 1 0

Some dimensions are speci�ed, other dimen-
sions are dependent on these, and the wheel and
shaft are free to rotate.

Design project for spring 2008: Develop a
SolidWorks assembly for a steam locomotive
engine.

Partial instructions:

You should ignore all of the detailed pip-
ing on the boiler.

All bolts may be omitted.

Clear glass (set material) window panes
must be used on the cab. �ey do not have
to slide or open.

�e drive mechanism should be included,
except for the numbered items in the dia-
gram (Figure 4) which may be omitted.
Note that part of the drive mechanism is
missing from the train in the picture.

�e headlight may be a simple circular
shape on the front of the tank, and need
not be clear. Extra credit will be given for
more realistic headlights.

Both pistons should be included, and the

lower one should work when the wheels
are turned.

�e large wheels may be identical, and
should all have spokes, like the �rst and
third.

�e o!set weights (crescents) on the
large wheels may be identical for all three
wheels, and similar to the rear wheel ($at
on one side). �ey should be located op-
posite the connection of the wheel to the
drive mechanism.

�e smokestack should have an opening
at the top.

Other projects in spring 2008:

Lid from a CD case. Students examine
CD case lids and create 3D models.

Mount for a dish antenna. Students create
a 3D model of an antenna mount from a
photograph.

Can opener assembly. Students examine a
hand operated can opener and create an
assembly model.

Electrical conduit box fabricated from
sheet metal. Students examine conduit
boxes and create 3D models.

Figure 2. Assembly used for design project in
spring 2006 and spring 2007. Courtesy of Dr.
Richard Martin, PhD, PE, Aztec Engineering (R.
Martin, personal communication, 2006).

1 6 - E n g i n e e r i n g D e s i g n G r a p h i c s J o u r n a l

v o l u m e 7 4 n u m b e r 1

Figure 4. Locomotive drive mechanism used in the spring 2008 design project. Diagram is from Robert
Booty’s Steam Locomotive Valve Gear website: home.roadrunner.com/~trumpetb/loco/ , used with per-
mission (Booty, 2001).

Figure 3. Locomotive photographs used in the Spring 2008 design project. Photographs by Paul Swanson,
courtesy of Mid-Continent Railway Museum, North Freedom, Wisconsin (Swanson, nd).

