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Abstract

This study proposes an innovative solution to the problem of multiobjective engineering design optimization by integrat-
ing desktop VR with genetic computing. Although, this study considers the case of construction design as an example 
to illustrate the framework, this method can very much be extended to other engineering design problems as well. The 
proposed framework generates optimal solutions for the problem of construction design, which is becoming an increas-
ingly complex problem due to the multitude of factors involved in the process.  This study places special emphasis on the 
modeling of the scenes within the virtual world from the design perspective. Even though genetic algorithms (GA) have 
been used by professionals in diverse disciplines to optimize conflicting objectives, these provide the end user with a pool 
of solutions rather than a unique solution that can be implemented. Hence, this study proposes a desktop VR framework 
that serves as a visualization tool to aid decision makers to better evaluate the alternative solutions from the Pareto set 
resulting from the GA process. Modeling alternative scenarios is formulated as an optimization problem wherein design 
configurations are generated using genetic algorithms. With the goal of sustainable and non-destructive construction 
design and planning, the algorithm is intended for multiple objectives. The study also presents an innovative perspective 
on this whole process by presenting the qualitative evaluation of the scene based on human evaluation and incorporat-
ing changes. The results demonstrate the robustness of the GA framework and also substantiate the utility of the virtual 
scenarios.
_____________________________________________________________________________________

INTRODUCTION

Invariably, today’s complex design problems 
demand coordinated optimization of multiple 
objectives. The solution is to resourcefully negoti-
ate the different objectives resulting in a judicious 
compromise. Genetic algorithm (GA) based mul-
tiobjective optimization techniques have been suc-
cessfully applied to a wide range of disciplines in 
the recent past. Genetic algorithms are heuristic 
search procedures employed in finding solutions 
for multiobjective optimization problems.  The 
GA process generates a group of optimal solutions 
for the particular multiobjective optimization 
problem, which is known as the Pareto set, with 
plans that represent a meticulous trade-off (Stew-

art, Janssen, & van Herwijnen, 2004). For any de-
sign optimization, the decision makers are looking 
for a single satisfactory solution that can finally 
be implemented. When using genetic algorithms 
(Goldberg, 1989) for multiobjective design opti-
mization, it is very important to carefully scruti-
nize the differences among the candidate solutions 
to obtain a better knowledge of the basic processes 
and the satisfaction of objectives. The process of 
choosing one single solution over others entails ex-
haustive domain knowledge.  Typically, many GA-
based design optimization procedures make the 
final choice of the solution (from the Pareto set) 
based on some ‘higher level information’ (Seixas, 
Nunes, Louren, Lobo, & Condado, 2005). How-
ever, when it comes to design and planning, it is 
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not possible to implement all the conflicting so-
lutions in the Pareto set (resulting from the GA 
process). Hence, we offer a virtual reality based vi-
sualization to explore and study the alternative so-
lutions. Visualization, as defined by Spence (2007) 
as the ability “to form a mental model or mental 
image of something.” (p. 5), is a very handy cog-
nitive ability that holds immense potential in the 
domain of planning and designing (Tufte, 1990). 
Spence (2007) noted that advances in computer 
technology have led to a huge increase in the ap-
plication of information visualization over the past 
two decades. Visualization models have been built 
in research disciplines including medicine, edu-
cation, mining, GIS (Geographical Information 
Systems), and various other domains to facilitate 
information comprehension and analysis. The 
power of visualization models lie in their ability 
to present data in a form that allows the viewer 
to ‘see’ the information in a way more easily in-
terpreted and understood. Elements that need to 
be considered in construction design and planning 
include the floor space, structural requirements of 
the proposed construction, recreational and public 
amenities (as required), aesthetic concerns, and so 
on. Providing satisfactory solutions in the face of 
conflicting demands by multiple stakeholders is a 
daunting task. Therefore, the proposed framework 
offers interactive 3D scene visualization to facili-
tate comparing the alternatives. The GA in this 
study includes a well-planned selected set of objec-
tives that are explicitly conflicting: maximization 
of shopping space, maximization of recreational 
space, and maximization of public service space. 
Inherently, these three objectives are conflicting in 
nature as an increase in one space will lead to a 
decrease in one or both of the others. 

The outline for this paper is as follows: Section 
2 discusses the process of multiobjective optimiza-
tion and the various approaches for multiobjective 
design optimization. Section 3 delineates the GA 
methodology employed in this study and expli-
cates the research framework and the components. 
Section 4 elucidates the shopping mall plans and 
the adaptation of the GA for the floor plans. Sec-
tion 5 explains the Desktop VR rendering of the 
plans. Section 6 provides the discussion followed 

by section 7 that briefly discusses qualitative scene 
analysis based on human evaluation and subse-
quently modifying the scene accordingly. Finally, 
Section 8 presents the conclusion of the study.

MULTIOBJECTIVE OPTIMIZATION IN 
ENGINEERING DESIGN PROBLEMS

Notwithstanding the remarkable advancements 
made within the realm of engineering design, ow-
ing to the ever-increasing number of factors in any 
major project, the design exercise has become a 
complicated process and satisfying all objectives 
seems to be a daunting and sometimes impossi-
ble task. Every design process today is inherently 
driven by the needs of the consumer and/or the 
stakeholders and there should be a means to verify 
if the proposed plan will meet all the demands. It 
amounts to a colossal waste of time, effort, and 
money to construct a project and finally realize 
that it falls short of some objectives initially set 
out. Consequently, considerable care has to be ex-
ercised during the planning and designing phases. 
Typical design problems consist of a predefined set 
of decision variables and a particular number (n) 
of objective functions that need to be maximized 
or minimized under a given set of constraints. In 
order for a plan to be considered part of the Pa-
reto set, no other plan, which is superior in all ob-
jectives, should be found. In other words, a plan 
may outdo the Pareto plan in one objective and 
a different plan may be better in another objec-
tive; however, a ‘single plan’ does not outperform 
a Pareto plan in all the objectives. From the above 
discussion it can be seen that plans that do not 
belong to the Pareto set (non-Pareto plans) are 
‘dominated’, because a Pareto plan that is better 
(or that which dominates) already exists.

Multiobjective genetic algorithms (MOGA), a 
family of heuristic methods, overcome the limita-
tions of traditional methods because it is capable of 
solving the non-linear, non-additive optimization 
problems without reformulating the problems. 
With these merits, MOGA has been adopted in 
a large number of design and planning research 
projects (Stewart et al., 2004; Balling, Powell, & 
Saito, 2004). However, because MOGA usually 
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retrieves a large number of optimal design plans, 
new techniques are needed in order to facilitate 
spatial decision making, among which visualiza-
tion plays an important role. In particular, to vi-
sually plot the candidate solutions of the design 
space is an intuitive way to visualize these optimal 
alternatives.

METHODOLOGY

The study area considered here is the floor space 
(400 cells) for a shopping and residential mall that 
is usually divided into zones (various spaces based 
on usage). These zones are allowed to assume dif-
ferent values. The genetic framework for the re-
gion is represented by a ‘gene’ for every changeable 
zone. In this study, we use an integer based genetic 
representation, i.e. each gene is an integer that can 
assume any value from among the various designs 
considered in the study. In this example, the zones 
are coded as follows: Public Service Space is as-
signed a FL_CODE of 0, Food Court 1, Parking 
Spaces 2 Convention/Conference area 3, Recre-
ational spaces 4, Public Service Spaces 5, Com-
mercial Space – Supermarkets 6, Commercial 
Space – IT offices 7, Commercial Space – Other 
Shopping Spaces 8, Control and Reserved Spaces 
9.  Therefore, each zone is plotted or mapped to 
an integer within the range of 0-9, and the integer 
values of all such zones are linked together, result-
ing in an integer string (Chandramouli, Huang, 
& Xue, 2009). 

In the beginning (first generation), a random 
value is assigned by the GA to each gene. The gen-
eration size is chosen as 100, corresponding to 100 
floor plans. Then, each plan is scrutinized with re-
spect to the three objectives and three constraints.  
Plans that meet the constraints are deemed as 
practicable ones. The goal is to produce a land-use 
map that will ensure maximum values of shop-
ping space, recreational space, and public service 
space.  As the design variables can assume any of 
10 integer values, the total set of possible plans is 
as big as 10n, where n is the number of cells (400). 
This signifies an enormously discrete search space. 
Probably only a tool like GA that is robust and 
efficient is capable of performing multiobjective 

optimization in such a large search space. 

Considerations in GA Formulation
Adequate care has to be taken in the process of 

formulating the GA. Clear representation of the 
problem is inevitable for an effective solution. Just 
as alternative solutions are possible, alternative 
representations are also possible. When consider-
ing floor plans, it is possible to represent the prob-
lem in the form of raster or vector spaces. In this 
case, cells of equal dimensions have been chosen. 
In other words, the study area has been divided 
into a grid of rasters. However, it is possible to 
characterize the same problem using a vector rep-
resentation similar to that used in Geographical 
Information Systems (GIS) (This concept is later 
illustrated using Figure 3a and Figure 3b). In GIS, 
vectors or polygons are used to denote land parcels 
whose dimensions are specified using attributes. 
Also, even when choosing to use a raster-based 
representation, various options are available. The 
size of the individual cells is an important factor 
to be considered. The area can be divided into 20 
x 20 cells or 200 x 200 cells or even 2000 x 2000 
cells. Several considerations affect this decision in-
cluding the computing power available for the GA 
process.

GA Framework
GAs typically consist of the following steps:

•	 Selection process wherein the individuals for 
the next generation are chosen

•	 Manipulation, wherein recombination and 
mutation are performed using genetic opera-
tors

In this study, integer based representation, a 
common method of encoding used in GAs, has 
been implemented. The genetic framework for the 
region is represented by a gene for every change-
able zone (Figure 1).

Figure 1. A chromosome structure with inte-
ger representation
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We use integers because integers are simple and 
straightforward from the computational perspec-
tive. The generation size is chosen as 100, resulting 
in 100 floor plans at the end of the execution of 
the first generation. An initial generation is created 
by a process of random generation in the presence 
of constraints and the iterations are repeated un-
til a feasible set is obtained. ‘Feasible set’ refers to 
plans that satisfy the constraints imposed. During 
iteration, the plans in a generation are checked 
individually for satisfaction of the minimum re-
quirements/constraints and those that satisfy these 
requirements are added to the feasible set and the 
others are discarded. The procedure is repeated 
until the initial generation with 100 chromosomes 
(floor plans) is obtained (Figure 2). After the ini-
tial generation is obtained, the selection, recombi-
nation, and mutation processes are performed to 
create the subsequent generation.

Figure 2. Generation of the ‘feasible set’

Selection and Variation
As stated earlier, the GA process consists of two 

very fundamental operations, namely selection and 
variation. The selection process is the step whereby 
the individuals that are ‘fit enough’ to be passed on 
to the next generations are chosen. Typically, this 

process is biased by the fitness of the individuals 
in such a way that individuals with higher fitness 
have a great probability to make it to the subse-
quent generation. The selection process can be 
stochastic or deterministic; the basic objective is 
to eliminate the poor quality individuals from the 
population set. The value of an individual member 
of the population with respect to the optimization 
process is represented by a scalar quantity known 
as ‘fitness’. The fitness value is calculated based on 
the objective functions and constraints. After cal-
culating the fitness values of every individual in 
the generation, those members with higher fitness 
values are selected for the subsequent generation. 
However, not all the members from the present 
population can be selected for the next generation. 
This proportion is called the rate of selection or 
selection rate. For instance, if the selection rate is 
.2, then out of a population of 100, 20 individuals 
will be selected for the next generation. Likewise, 
if n = 100, and x = 0.4, then 40 individuals are 
obtained by selection and the remaining 60 are 
generated by the processes of recombination and 
mutation. One vital consideration during this step 
is the choice of the number of chromosomes to 
retain. If there is a considerable number of poor 
quality chromosomes in the present population, 
retaining a large number of these chromosomes 
for the next generation will negatively affect the 
overall fitness of the generation. On the other 
hand, if only a minimal number of chromosomes 
are retained from the present generation to the 
next generation, this will restrict the number of 
genes available in the offspring. This step mimics 
the natural selection process.  In the process used 
in this study, chromosomes with a fitness value be-
low the threshold limit are not considered for the 
next generation.

Subsequently, recombination, the process of 
merging the genetic information from two parent 
chromosomes follows. In the recombination step, 
a predetermined number of parents are selected 
and are recombined using crossover operations to 
create children. In order that the process remains 
stochastic, a probability rate known as crossover 
probability is used along with the crossover opera-
tor.  The crossover point is where the swapping of 
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genes occurs. This point is chosen randomly and 
it lies between the first and last genes of the chro-
mosomes. At first, one of the two members of the 
mating pair, called Parent1 provides the genes to 
the left of the crossover point to the Offspring1 
and the second member of the mating pair, Par-
ent2 provides the genes to the right of the cross-
over point to the Offspring1. Thus, the Offspring1 
now contains material from both the parents. Sim-
ilarly, the second offspring is generated by combin-
ing material from Parent1 and Parent2. The genes 
to the right of the crossover point from Parent1 
and that to the left of the crossover point from Par-
ent2 are combined to produce Offspring2.  Once 
the recombination step is over and the crossover 
operations are complete the generation is full with 
its complete population of chromosomes. At this 
stage, random mutations are introduced in the 
population. Mutation helps the GA process in two 
ways:

1. Mutation helps prevent premature conver-
gence

2. Mutation aids establishing new traits not pres-
ent in the original population 

Subsequent Generations and Conver-
gence

After the mutation step is completed, the result-
ing generation is ready for the iterative process. 
The steps starting from fitness calculation are re-
run for the individual chromosomes of the new 
generation and this generation undergoes the steps 
of selection, recombination, and mutation as be-
fore until the subsequent generation is obtained. 
The iterative process of the subsequent generations 
depends on

•	 Whether specific search criteria have been sat-
isfied or

•	 Whether a specific number of iterations have 
been surpassed

Objective Functions and Constraints
In this study, three objectives were considered, 

which ensure that: 

1. The building can accommodate more com-
mercial establishments

2. The recreational spaces are increased, 
3. The residents and the shopper get more space 

for public amenities

Genetic algorithms typically consist of func-
tions or objectives that are to be maximized or 
minimized during the process of optimization. In 
this study we wanted to have objectives that are 
directly and intensely conflicting in terms of area. 
The first objective was meant to increase the shop-
ping space as typically stakeholders would be in-
terested in enhanced commercial value for higher 
return on investments. Three index values: Com-
mVal, Recval, and PubVal, are used as objective 
measures. The objectives are to maximize the com-
mercial value, recreational value, and the amount 
of public service space. Among the 10 floor space 
types seen in this study, one particular floor space 
type needs special consideration. These are the 
control and reserved spaces, which are set aside for 
special purposes.  Different sets of uses and regula-
tions govern the use of such floor space types and 
changes, if any, to such areas involve considerable 
administrative brainstorming. Hence, the floor 
space types categorized as control and reserved will 
continue to remain unchanged by the GA process. 

The three indices are calculated as follows for 
the 100 plans in a generation:

for i = 1:100
PubVal(i,1) = ( AreaRec(i,1))/SumArea;
End
Where, 
PubVal = Index for measuring recreational value 
of a plan,
AreaRec(i,1)=Area for recreational spaces in Plan 
i. &
SumArea = Total area of all the 400 cells

Similarly, the index values CommVal and Pub-
Val are calculated. The following constraints are 
imposed on GA:Floor Spaces designated as Emer-
gency Exits and those reserved for Safety purposes 
are not to be changed, Spaces designated as park-
ing are not to be changed and Specific floor spaces 
with residential structures are not be changed. In 
order to ensure these constraints are met, a select-
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ed number of cells from among the 400 cells are 
not allowed to change during the GA process.  

Fitness Evaluation
After considering several fitness evaluation pro-

cedures, we find the Maximin function (Balling, 
Taber, Brown, & Day, 1999; Balling et al., 2004) 
to be very appropriate for GA studies involving 
problems involving category allocation for floor 
plans as seen in figure 3.

Val is the current value of corresponding objective,
Valmin is the least value of all Val values of the plans 
in the current generation and
Valmax is the highest value of all Val values of the 
plans in the current generation.

Shown above is the normalization of the objec-
tives using a simple and straightforward procedure 
that involves scaling. Normalization involves find-
ing the maximum as well as the minimum values 
for each objective for a set of plans in a genera-
tion and then re-scaling using the following for-
mula. The number of objectives is 3 in this study. 
The normalized objectives scores are given using 
a simple and straightforward technique of linear 
interpolation.  Thus, considering the three objec-
tives concerning Sustainability value of a plan, 
Economic value, and Recreation value, the nor-
malized scores can be obtained as described above. 
The plans need to be compared with other plans 
in the generation to find the fit ones in the gen-
eration.  As mentioned earlier, for measuring the 
fitness of the plans, the Maximin fitness function 
(Balling et al., 1999) is used. The fitness of each 
plan in a generation is calculated relative to that of 
the other plans in the same generation. The greater 
the CommVal, RecVal, and PubVal of a plan, the 

higher will be the fitness of that plan in comparison 
with the other plans of the generation. Consider-
ing two plans Planj and Plani, Planj is superior to 
Plani if the indices CommVal, RecVal, and PubVal 
of Planj are all greater than the corresponding in-
dices of Plani. Planj is superior to Plani if it exceeds 
it in all the three objectives. if the minimum of 
the above three differences is greater than 0, then 
Planj is superior to Plani.. Each plan in a genera-
tion must be compared with all the other plans in 
the generation. If it is to be found whether a Plani 
is dominated or not, it is compared with all other 
plans using the aforementioned principle. The fit-
ness of the ith plan is obtained as follows in figure 
4 (Balling et al., 1999): 

Where, 
Range1 = CommValmax – CommValmin
Range2 = RecValmax – RecValmin
Range3 = PubValmax – PubValmin

Range1, Range2, and Range3 represent the scal-
ing factors for the three objectives, for all the plans 
in a particular generation. However, it should be 
noted that this value has to be computed during 
each iteration for every single generation so the 
maximum and minimum values of each objective 
varies during each generation. Based on the fitness 
formula described above, it is possible to identify 
the Pareto-optimal plans from the fitness values 
obtained.

GA Implementation
The GA is implemented with the objective of 

searching and finding a set of plans for the com-
munity, which meet the constraints imposed on 
the GA while maximizing the objectives.  Plans 
that satisfy the constraints are called ‘feasible plans’. 

Figure 3. Maximum function

Figure 4. Fitness formula
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The final plans obtained from the GA must be 
Pareto-optimal with respect to the multiple objec-
tives. Pareto-optimal plans are both ‘feasible’ and 
non-dominated. The word non-dominated im-
plies that no other feasible plan in the generation 
is better than this plan in all objectives. In order to 
ensure that only plans that satisfy the constraints 
are included in the very first generation, randomly 
generated plans are scrutinized to check if they 
satisfy the aforementioned constraints. Only plans 
that satisfy the constraints are selected and includ-
ed in the starting generation. This process is re-
peated until the starting generation has 100 plans, 
all of which satisfy the constraints (Table 1). From 
the starting generation, the second generation is 
constructed using the GA methodology. The third 
is generated from the second, the fourth from the 
third and so on for a total of 100 iterations at the 
end of which a generation with 100 final, feasible 
plans results. After mating, mutation is performed 
to introduce qualities that are not originally pres-
ent in the parent population. Mutation involves 
randomly changing a selected number of genes in 
specific chromosomes obtained from the earlier 
process. In this study, the mutation probability is 
chosen as .05. Mutation is typically applied to the 
offspring generated from the earlier step, subject 
to the mutation probability. A random number 
between 0 and 1 is generated for each gene in the 
two offspring. If the random number is less than 

the above probability of mutation (.05), then the 
integer value of the gene is changed to another 
random value between 0 and 9. The above pro-
cesses cumulatively represent the complete process 
of creating a new generation from an earlier gen-
eration. This constitutes one sequence of iteration. 
The whole GA process involves 100 iterations at 
the end of which the Pareto set containing the 
Pareto-optimal plans is obtained.

The fitness values of the individual plans in the 
generation are calculated using the fitness formula 
described earlier Plans with higher fitness values 
have higher Pareto-optimality and hence are more 
‘fit’ than the rest of the plans in the generation 
(the p value chosen here is 15 , Balling et al., 1999, 
2004). The plans altogether constitute the Pareto 
set. Plans belonging to the Pareto set are called 
non-dominated plans. This is because no other 
plan exceeds the Pareto plan in all the objectives. 
A plan may outdo the Pareto plan in one objective 
and yet another plan may outperform the Pareto 
plan in another objective; however, no single plan 
surpasses the Pareto plan in all the objectives. The 
Pareto set is devoid of the influence of the relative 
significance of the various objectives. Hence, plans 
not belonging to the Pareto set are called domi-
nated plans since Pareto plans that surpass these 
plans have been found. Pareto plans significantly 
aid the process of decision-making as planners and 

Table 1. Algorithm for GA Based 3D Visualization

Part I. Feasible Set Generation

1. Generate Random Population 
2. Check for Constraint Satisfaction
3. Include in Feasible set Upon Satisfying Con-

straints
4. Repeat Steps 1-3 Till Population Reaches 100
5. Calculate Fitness of Feasible Set(Part II Steps 6-0)
6. Sort
7. Use Sorted Generation as Starting Generation 

Part II. GA-Main Loop

1. Initiate Generation Number to 1
2. Select Top 10 Plans from Previous Generation
3. Use Tournament Selection to Select Offspring 
4. Perform Mutation
5. Repeat Steps 3and 4 to Get 100 Chromosomes

6. Initialize Indices Matrix for Plans in a Genera-
tion 

7. Get CommVal, RecVal, PubVal for 100 Plans
8. Compute Fitness Values
9. Sort plans based on Fitness
10. Set sorted generation as current generation
11. Repeat steps 1-11 for 100 Generations

Part III. VR-Visualization

1. Select Pareto-plans from Final Generation 
2. Identify Scene Elements to Compose Virtual 

Envt.
3. Render the 3D Elements to Generate Virtual 

Scene
4. Evaluate Plans & Select 1 Plan for Implementa-

tion
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administrators need not sift through hundreds of 
thousands of plans; but, they can merely search 
the Pareto set to find an optimal plan. However, 
there is still one shortcoming. Decision makers 
are still confronted with a set of plans from which 
they have to choose one plan.  This process cannot 
be automated as now the relative significance of 
the various objectives based on the ultimate de-
velopment goals should be considered. This is a 
prototype study that proposes the use of VR-based 
representation to visualize two plans with high fit-
ness values from the final generation and select one 
among them as the final plan for implementation. 

GENERATING FLOOR PLANS

The study area is divided into 400 cells, each of 
which has an initial allocation of floor type as elab-
orated in Table 2. At first look, Figure 5a might 
not seem to be divided into 400 cells. The study 
area is classified into zones (or cells) based on their 
usage (Figure 5a and Table 2). Cells belonging to 
the same category have been combined together 
and re-arranged to illustrate a floor plan. The 
study area could very well be like the one shown 
in Figure 5b that shows an alternative representa-
tion for the same floor area and represents a more 
detailed and conventional display. In the case of 
a plan like figure 5b, instead of uniform cells of 
equal area (or rasters), vectors (or polygons) have 
to be employed. Otherwise, the methodology de-
scribed herein holds equally good for any type of 
representation. For the sake of simplicity and to 

facilitate a lucid demonstration of our methodol-
ogy integrating GA with Visualization, we have 
considered a relatively simple floor space for this 
study.

The plans in the starting generation were gener-
ated by a random process in which integer values 
were allotted to the 100 chromosomes. Each of 
this is a potential solution to the problem consid-
ered in this study, corresponding to the 400 zones 
in the study area. The set of constraints entail the 
values of certain design zones to remain invariable. 
During the starting random generation stage, the 
plans that did not satisfy these constraints were 
discarded. From this starting generation, the 
whole GA process involves 100 iterations resulting 
in a generation with 100 final, feasible plans. In 
this study, the mutation probability was chosen as 
0.05. On the whole, the average time consumed 

Table 2. Gene-Floor Types

Figure 5a. Study Area – Mall Floor Space Figure 5b. Alternate Representation - Study 
Area

Floor Space Type FL_Code Gene
Space for Public Utilities PBL 0

Food Court FC 1
Parking Spaces PS 2

Convention Area CA 3
Recreational Spaces REC 4

Library LIB 5
Commercial Space CS 6

Commercial Space-IT CSIT 7
Spaces b/w Floor Types CSS 8
Emergency/Reserved ERS 9
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for the experiments that were performed on a Pen-
tium-IV machine with 1 GB RAM is 6700 sec-
onds for one execution of 100 generations.

DESkTOP VR RENDERING OF PA-
RETO OPTIMAL DESIGN PLANS

Many GAs generate optimal solutions via it-
erative optimization procedures. However, the 
work stops there and then subjective measures are 
employed to select one plan for implementation. 
Therefore there is an increasing need for tools or 
indicators that can efficiently depict design scenes 
as one comprehensive screenshot rather than a 
series of non-coherent data layers. Virtual reality 
visualization can meet such need by facilitating 
not only presented information, but also enabling 
seeing and understanding of hidden information 
among datasets. By using 3D visual scene ren-
derings, planners who are experts in the fields of 
design planning can identify desirable or undesir-
able patterns. Aesthetic view quality is of signifi-
cant importance in design. For instance, a struc-
ture blocking the view of a piece of art or some 
other feature of prominence specifically included 
to enhance the face value of the shopping mall is 
undesirable and hence such a design is not judi-
cious. Three-dimensional visualization can greatly 

facilitate the study of the aesthetic quality of a 
plan. Furthermore, such visualization tools can be 
also integrated into public participation systems 
and allow non-planning experts to get actively in-
volved in the selection process. 

Virtual reality has been described in many ways 
by various researchers. Generally, however, vir-
tual reality can be defined as the application of 
an artificial environment generated by computer 
technology to simulate some targeted activity 
(Connolly, 2005).  Virtual environments cover a 
wide continuum of involvement, including those 
that are fully immersive for the user - involving 
multi-sensory input and interactive movement 
controlled by the user (immersive VR), partially 
virtual and real environments (augmented VR), or 
virtual environments fully contained within a two-
dimensional computer screen (desktop VR). 

In the example presented in this paper, the au-
thors utilize desktop VR to display the results of 
the Pareto design plans. Regarding the visualiza-
tion advantage that virtual technologies can pro-
vide, Mohler (2000) stated:

“Virtual reality (VR) technologies provide a 
unique method for enhancing user visualization 
of complex three-dimensional objects and en-
vironments. By experience and environmental 
interaction, users can more readily perceive the 
dimensional relationships of objects typically 
portrayed through static multiview or pictorial 
representations. (p. 151)”

A scene-tree construction is used in Virtual 
Scene Renderings. The root or the parent object 
consists of whole scene grouped together and all 
the other components are grouped under this par-
ent object using ‘parent-child’ relationships (Fig-
ure 6).  Individual scene elements corresponding 
to each floor type such as library, convention area, 
residential, commercial, recreational, public utili-
ties were created from scratch and were positioned 
according to their corresponding positions as per 
the Pareto plan obtained in the previous step. For 
complex objects including multiple parts, various 
object parts are grouped to form parent objects, 
leading to complete objects that are once again Figure 6. Code Snippet Showing Grouping of 

Scene Objects
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combined and positioned properly to form bigger 
objects resulting in the final 3D scene.

Two Pareto-plans with the highest fitness val-
ues were selected and visualization plans generated 
for these. Figure 7 illustrates the various scene ele-
ments generated for the virtual scene and Figure 8 
shows the complete 3D virtual world composed of 
all these elements. The individual scene elements 
are positioned based on their corresponding loca-
tions according to the Pareto plan. 

Figure 7. VR scene elements corresponding 
to various categories: Clockwise from Top-
Left-Residential, Convention Area, Library, 
Recreational, Food-court, Public-Amenities

Figure 8. Populating the VR scene with ele-
ments corresponding to Pareto Plan

Figure 6 above shows a detailed 3D design cor-
responding to the Pareto plan. Using such a dis-
play, designers and planners can see the potential 
solution instead of discussing in an abstract man-
ner.   Thus, the usefulness of visualization in evalu-
ating CPOPs (Competing Pareto-optimal plans) 
is evident. The plans can be compared in a very 
systematic manner by evaluating them based on 
the objectives considered in this study. Moreover, 
using various LODs (Level of Detail) and study-
ing the same scene from multiple viewpoints, nu-
merous issues that might not otherwise be obvious 
can be identified. Subjective features such as scene 
quality can be studied in a more reliable manner. 

The same scene can be viewed with varying levels 
of detail. For instance, when viewing from a dis-
tance, the finer details are not obvious. This notion 
can be used to efficiently model the scene. Based 
on the viewer’s position in a scene, the objects can 
be rendered accordingly.

DISCUSSION

In this study, interactive and navigable virtual 
worlds were generated, which can efficiently de-
pict design scenario(s) than a set of paper-based or 
PC-based 2D data representations. Nevertheless, 
unless the data is transformed into the 3D format 
it is not of significant use to planners and decision 
makers, since interpreting voluminous statistical 
data is a mammoth and cumbersome task. Visu-
alization aids in understanding the overall scene 
composition and understanding its function ho-
listically. A closer look at figure 6 shows that some 
of the originally included floor plans cannot be 
found. This is because the constraints did not en-
sure that all the FL_Types were strictly to be rep-
resented minimally in the final plan. Hence, after 
including this in the GA, the plans were regener-
ated (Figure 9).

Figure 9. Pareto plan including elements 
such as library and reserved space (Orange)

One prominent advantage of using visualization 
models is that even a bird’s eye view can provide 
enormous details to the observer. For instance, 
planners can identify desirable or undesirable pat-
terns using visual scene renderings. The ability to 
view a scene from innumerable perspectives is an 
essential functionality to capture the links between 
the various dimensions of a virtual scene. Scene 
characteristics that are otherwise incomprehensi-
ble become evident when using such advanced 3D 
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visualizations. Furthermore, the software(s) used 
in this study are Opensource and are web-friendly 
in the sense that (if the situation demands) hosting 
them online is extremely straightforward. These 
worlds can easily be embedded into a HTML/
xHTML file or can be displayed on the popular 
internet browsers with a plug-in for displaying the 
3D worlds.

From the above discussion, it follows that the 
obvious advantage of using virtual worlds for vi-
sualizing the competing Pareto-optimal plans 
(CPOP) is that patterns (desirable or undesirable) 
can be easily found (Chandramouli et al., 2009). 
Using varying LODs and by studying the same 
scene from multiple viewpoints, numerous aspects 
that might not be obvious otherwise can be found. 
Subjective features such as scene quality can be 
studied in a more reliable manner. From the fol-
lowing figure (Figure 10), the use of visualization 
to study the same scenario from various viewpoints 
is evident.  Using Anchor nodes (in VRML) anno-
tations or additional information can be added to 
the virtual worlds – these might include a gamut 
of information including CAD files, other draw-
ings, MS Project files, etc. Additionally, the Exter-
nal Authoring Interface (EAI) of the virtual scene 
created above provides a valuable means of extend-
ing the scene capabilities beyond what can be used 
using Anchor nodes available within VRML. The 
EAI provides an excellent means of enhancing 
the existing functionalities via Java or JavaScript 
source code. Such code snippets can be plugged-in 
to provide advanced functionalities include com-
putational capabilities (where necessary).

Figure 10. Scene Viewed from Varying POV 
(Points of View)

Another crucial aspect that is facilitated by this 
integration of desktop VR with GA is the evalua-

tion of the aesthetic view quality. Interior as well 
exterior design is a prominent issue in engineering 
planning and design today. The ability to foresee 
the final renderings in 3D before implementation 
and being able to provide the stakeholders with a 
concrete product layout even before the construc-
tion can begin is a very valuable asset. Such visual 
representations serve to rise above the challenges 
imposed by conventional factors such as scale and 
viewpoints. The functionalities within the VRML 
browser plug-ins that enable exploring and study-
ing the same virtual world studied from various 
orientations is of immense value in scene-analysis 
(Chandramouli et al., 2009). Furthermore, mod-
ern browsers provide excellent features whereby 
scene elements can be translated, rotated, and ma-
nipulated in several other ways.

QUALITATIVE SCENE ANALYSIS 
BASED ON HUMAN EVALUATION 
AND SCENE MODIFICATION 

A GA greatly facilitates the process of explor-
ing the search space effectively and narrows down 
the search to a limited area with a very high prob-
ability of potential solutions as is described in 
earlier sections. A GA can be used for imposing 
constraints and formulating objective functions. 
However, it may not be possible to include all the 
elements that “need” to be included in the plan-
ning process within a GA. That will necessitate 
the inclusion in the GA innumerable objective 
functions and as well as many constraints. Despite 
numerous objective functions and constraints, it 
is still possible that some important element were 
not considered. This might subsequently become 
evident when using the 3D Scene Visualization. 
Very simply, some aspects might not be evident 
unless a structure is in place. Once the structure 
is in place, some mistake might seem obvious to 
the observer and might find it implausible that 
the planners could not have considered that at an 
earlier stage. Hence, after the design process has 
passed the GA stage, the planners can still study 
the visualization and incorporate changes accord-
ingly. This enables incorporating the expertise of 
the decision makers which may not have been pos-
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sible in the actual GA process. Some subjective el-
ements pertaining to aesthetic considerations will 
fall under this category. 

CONCLUSION

Today’s design problems tend to be multifac-
eted and the involvement of multiple stakehold-
ers increase the complexity of the number of ele-
ments to be considered before finalizing a plan. 
Even though the search space can be efficiently 
skimmed using a multiobjective optimization tool 
such as a genetic algorithms (GA), they still do not 
provide the decision-makers with a unique solu-
tion that can be implemented. The selection of a 
single solution from the pool of candidate solu-
tions produced at the end of the multiobjective 
optimization process is by no means trivial. With-
out exaggeration, it can even be safely stated this 
might be as critical (if not more) as the actual mul-
tiobjective optimization process itself. A solution 
that has been selected without considering the 
various perspectives included in the study can seri-
ously undermine the effectiveness of the final so-
lution irrespective of the efficacy of the GA. With 
these points in consideration, in this study, design 
planning is formulated as a multi-objective opti-
mization problem, which is solved using genetic 
algorithms. The study does not stop with merely 
presenting the results in the form of a Pareto set 
with a pool of candidate solutions, but visualizes 
potential solutions using a visualization tool. Vi-
sualizing the plans in this manner throws open 
a plethora of perspectives and simulates the end 
product that can be visualized, explored, and navi-
gated. This tremendously facilitates the practice of 
informed decision-making, and in so doing aids 
the choice of the optimum plan. As mentioned 
in Section 5 earlier, the online hostability of these 
scene visualizations greatly enhances the utility of 
the framework. This not only facilitates the pro-
cess of obtaining review and feedback from the 
top-level administrators, but also paves the way 
for obtaining input from diverse audience owing 
to the ubiquity of the internet.
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